

Module Information Pack

BEng (Hons.) Electronic Engineering BEng (Hons.) Telecommunications Engineering

Module name: Digital Electronics
Module code: ELEC2102C

Academic Year 2022/2023 - Semester 1
Blended Mode (Online and F2F)

Programme Coordinator (BTEL):	Dr. Vinaye Armoogum
Programme Coordinator (BEE):	Mr. Dudley Tse Kai Wai
Module Coordinator:	Mr. Rishi H. Heerasing
Module Convenor:	Mr. Rishi H. Heerasing
1. Office:	Room G2.14 Level 2 SITE BLOCK
2. Phone:	2075250 ext. 124
3. E-mail:	rheerasing@utm.ac.mu
Academic Tutoring	None
Classes Day and Time:	Wednesdays 13:00-16:00 DEL
Credits and Level:	6 Credits, Level 2
Pre-requisite (if applicable):	Analogue Electronics
Co-requisite (if applicable):	None
Method of Delivery \& Frequency:	15×3 Hours blended classes
Method \& Criteria of Assessment:	50\% Coursework and 50\% Exams

Summary of Module Content:

Topics include encoding information in various digital formats, manipulation of real data using arithmetic, logic and relational operations, basic logic components, design, analysis and implementation of combinatorial logic circuits, principles of sequential logic and developing an understanding of memory elements and simple sequential circuits.

Module Aims:

- To introduce number systems and codes
- To introduce basic postulates of Boolean algebra and shows the correlation between Boolean expressions
- To introduce the methods for simplifying Boolean expressions
- To learn the basic methods for the design of digital circuits and provide the fundamental concepts used in the design of digital systems.
- To outline the formal procedures for the analysis and design of combinatorial circuits and sequential circuits

Learning Outcomes:

By the end of this module, students are expected:

- To understand the main building blocks of digital circuits and the practical aspects of digital electronics.
- Manipulate number systems used in digital system.
- Use basic gates and MSI circuits in digital system design.
- Analyze counter and register circuits.
- Design synchronous counters.
- Understand the operation of memory circuits.

Tentative Module Schedule

NOTE: All classes will be in blended mode until further notice.

Wk	Dates	
1	$19 / 10 / 22$ F2F	Digital Concepts, Number Systems, Operations, and Codes
2	$26 / 10 / 22$ Online	Logic Gates and Boolean Algebra
13	02/11/22 F2F	Public Holiday
4	$09 / 11 / 22$ Online	Digital Logic Families
5	$16 / 11 / 22$ F2F	Combinatorial Logic Analysis
6	$23 / 11 / 22$ Online	Functions of Combinational Logic
7	$30 / 11 / 22$ F2F	Functions of Combinational Logic
8	$07 / 12 / 22$ Online	Latches, Flip-Flops, and Timers
9	$14 / 12 / 22$ F2F	Latches, Flip-Flops, and Timers
10	$11 / 01 / 23$ Online	Counters
11	$18 / 01 / 23$ F2F	Counters
15	$25 / 01 / 23$ Online	Shift Registers, Memory and Storage
$01 / 02 / 23$		
F2F		

Reading List

Recommend Texts (as per availability in the UTM Resource Centre):

- Floyd T. L. (2005) Digital Fundamentals: $9^{\text {th }}$ Ed., Prentice-Hall *
- Tokheim R. (2007) Digital Electronics - Principles \& Applications: $7^{\text {th }}$ Ed., Mc-Graw-Hill. (D6.11 TOK)
- Predko M. (2005) Digital Electronics Demystified, Mc-Graw Hill *
*You can download a copy of these books in e-book format on my site at http://www.rishiheerasing.net/modules/elec2102/readings.html

Other Reading Materials e.g. Articles/Papers/Websites:

- Prentice-Hall Companion Website for Digital Fundamentals, $10^{\text {th }}$ Edition at http://wps.prenhall.com/chet_floyd_digitalfun_10/

Past Exam Papers

- Given at the end of MIP and also from the Resource Centre at http://www.utm.ac.mu/Resource/

Module Assets

The assets are available on Nefertum's Shrine at http://www.rishiheerasing.net/modules/elec2102/ln.html

The lectures notes are in .pdf format so you will need Adobe Acrobat ${ }^{\circledR}$ Reader to view them. This reader can also be downloaded from the above-mentioned site.

Software needed will be National Instruments MultiSim Electronic Workbench Version 10.0 and is available on my site at http://www.rishiheerasing.net/modules/elec2102/tools.html

Digital Electronics

Digital Concepts

Analogue Quantities

Most natural quantities that we see are analogue and vary continuously. Analogue systems can generally handle higher power than digital systems.

Digital systems can process, store, and transmit data more efficiently but can only assign discrete values to each point.

ELEC2103

Binary Digits and Logic Levels

Digital electronics uses circuits that have two states, which are represented by two different voltage levels called HIGH and LOW. The voltages represent numbers in the binary system.

In binary, a single number is called a $b i t$ (for b inary digit). A bit can have the value of either a 0 or a 1 , depending on if the voltage is HIGH or LOW.

Slide Set 1
ELEC2103

Digital Waveforms

Digital waveforms change between the LOW and HIGH levels. A positive going pulse is one that goes from a normally LOW logic level to a HIGH level and then back again. Digital waveforms are made up of a series of pulses.

Pulse Definitions
Actual pulses are not ideal but are described by the rise time, fall time, amplitude, and other characteristics.

Periodic Pulse Waveforms

Periodic pulse waveforms are composed of pulses that repeats in a fixed interval called the period. The frequency is the rate it repeats and is measured in hertz.

$$
f=\frac{1}{T} \quad T=\frac{1}{f}
$$

The clock is a basic timing signal that is an example of a periodic wave.

What is the period of a repetitive wave if $f=3.2 \mathrm{GHz}$?

$$
T=\frac{1}{f}=\frac{1}{3.2 \mathrm{GHz}}=313 \mathrm{ps}
$$

Timing Diagrams

A timing diagram is used to show the relationship between two or more digital waveforms,

Basic Logic Functions

True only if all input conditions are true.

True only if one or more input conditions are true.

Indicates the opposite condition.

Pulse Definitions

In addition to frequency and period, repetitive pulse waveforms are described by the amplitude (A), pulse width $\left(t_{W}\right)$ and duty cycle. Duty cycle is the ratio of t_{W} to T.

Serial and Parallel Data

Data can be transmitted by either serial transfer or parallel transfer.

Slide Set 1
ELEC2103

Basic System Functions

And, or, and not elements can be combined to form various logic functions. A few examples are:

The comparison function

Basic arithmetic functions

Basic System Functions

The encoding function

The decoding function

Basic System Functions

The counting function

...and other functions such as code conversion and storage.

Basic System Functions

The data selection function

Basic System Functions

One type of storage function is the shift register, that moves and stores data each time it is clocked.

Serial bits on input line				Initially the register contains onlyinvalid data or all zeros as shown here
0101 -0	0	0	0	
$10 \rightarrow 1$	0	0	0	First bit (1) is shifted serially into the register.
01	-1	0	0	Second bit (0) is shifted serially into register and first bit is shifted right.
	0	-1	0	Third bit (1) is shifted into register and the first and second bits are shifted right
	-1	-0	-1	Fourth bit (0) is shifted into register and the first, second, and third bits are shifted right. The register now stores all four bits and is full.

Integrated Circuits

Cutaway view of DIP (Dual-In-line Pins) chip:

The TTL series, available as DIPs are popular for laboratory experiments with logic.

Example of Surface Mount Packaging for Integrated Circuits

1. Small Outline IC (SOIC)
2. Ball Grid Array (BGA)
3. Thin Small Outline

Package(TSOP)
4. Thin Quad Flat Pack
(TQEP)
5. Dual In-Line Package (DIP)
6. Quad Flat Pack (OFP)
7. Small Outline Package (SOP)
8. Shrink Small Outline Package (SSOP)
9. Ceramic Leadless Chip

Carrier (CLCC)

Test and Measurement Instruments

The front panel controls for a general-purpose oscilloscope can be divided into four major groups.

Test and Measurement Instruments

The logic analyzer can display multiple channels of digital information or show data in tabular form.

Slide Set 1
ELEC2103
20

Test and Measurement Instruments

The DMM can make three basic electrical measurements.

Voltage
 Resistance

Current

In digital work, DMMs are useful for checking power supply voltages, verifying resistors, testing continuity, and occasionally making other measurements.

Selected Key Terms

Analogue Being continuous or having continuous values.
Digital Related to digits or discrete quantities; having a set of discrete values.

Binary Having two values or states; describes a number system that has a base of two and utilizes 1 and 0 as its digits.
Bit A binary digit, which can be a 1 or a 0 .
Pulse A sudden change from one level to another, followed after a time, called the pulse width, by a sudden change back to the original level.
Clock A basic timing signal in a digital system; a periodic waveform used to synchronize actions.

Selected Key Terms

Gate A logic circuit that performs a basic logic operations such as AND or OR.

NOT A basic logic function that performs inversion.
AND A basic logic operation in which a true (HIGH) output occurs only when all input conditions are true (HIGH).

OR A basic logic operation in which a true (HIGH) output occurs when when one or more of the input conditions are true (HIGH).
Fixed-function A category of digital integrated circuits having logic functions that cannot be altered.
Programmable A category of digital integrated circuits capable of logic
being programmed to perform specified functions.

1. Compared to analogue systems, digital systems
a. are less prone to noise
b. can represent an infinite number of values
c. can handle much higher power
d. all of the above
2. The number of values that can be assigned to a bit are
a. one
b. two
c. three
d. ten
3. The reciprocal of the frequency of a clock signal is the
a. rise time
b. fall time
c. period
d. pulse width
4. If the period of a clock signal is 500 ps , the frequency is
a. 20 MHz
b. 200 MHz
c. 2 GHz
d. 20 GHz
5. The time measurement between the 50% point on the leading edge to the 50% point on the trailing edge of the pulse is the
a. rise time
b. fall time
c. period
d. pulse width
6. The time measurement between the 90% point on the trailing edge to the 10% point on the trailing edge of the pulse is the
a. rise time
b. fall time
c. period
d. pulse width
7. AND, OR, and NOT gates can be used to form
a. storage devices
b. comparators
c. data selectors
d. all of the above
8. A shift register is an example of a
a. storage device
b. comparator
c. data selector
d. counter
9. A device that is used to switch one of several input lines to a single output line is called a
a. comparator
b. decoder
c. counter
d. multiplexer
10. For most digital work, an oscilloscope should be coupled to the signal using
a. ac coupling
b. dc coupling
c. GND coupling
d. none of the above

Digital Electronics

Number Systems, Operations \& Codes

Decimal Numbers

The position of each digit in a weighted number system is assigned a weight based on the base or radix of the system. The radix of decimal numbers is ten, because only ten symbols (0 through 9) are used to represent any number.

The column weights of decimal numbers are powers of ten that increase from right to left beginning with $10^{\circ}=1$:

For fractional decimal numbers, the column weights are negative powers of ten that decrease from left to right:
$10^{2} 10^{1} 10^{0}$. 10-1 10-2 10-з $10-4 \ldots$

ELEC-2103

Decimal Numbers

Decimal numbers can be expressed as the sum of the products of each digit times the column value for that digit. Thus, the number 9240 can be expressed as

$$
\begin{aligned}
& \quad\left(9 \times 10^{3}\right)+\left(2 \times 10^{2}\right)+\left(4 \times 10^{1}\right)+\left(0 \times 10^{0}\right) \\
& \text { or } \\
& 9 \times 1,000+2 \times 100+4 \times 10+0 \times 1
\end{aligned}
$$

Express the number 480.52 as the sum of values of each digit.

$$
480.52=\left(4 \times 10_{2}\right)+\left(8 \times 10_{1}\right)+\left(0 \times 10_{0}\right)+\left(5 \times 10_{-1}\right)+(2 \times 10-2)
$$

Binary Numbers

A binary counting sequence for numbers from zero to fifteen is shown.

Notice the pattern of zeros and ones in each column.
Digital counters frequently have this same pattern of digits:

Binary Numbers

For digital systems, the binary number system is used. Binary has a radix of two and uses the digits 0 and 1 to represent quantities.

The column weights of binary numbers are powers of two that increase from right to left beginning with $2^{0}=1$:

For fractional binary numbers, the column weights are negative powers of two that decrease from left to right:

$$
2^{2} 2^{1} 2^{0} .2-12-22^{2-3} 2-4 \ldots
$$

Binary Conversions

The decimal equivalent of a binary number can be determined by adding the column values of all of the bits that are 1 and discarding all of the bits that are 0 .

Convert the binary number 100101.01 to decimal. Start by writing the column weights; then add the weights that correspond to each 1 in the number.

$$
\begin{array}{cccccccc}
25 & 24 & 23 & 22 & 21 & 20 . & 2-1 & 2-2 \\
32 & 16 & 8 & 4 & 2 & 1 . & 1 / 2 & 1 / 4 \\
1 & 0 & 0 & 1 & 0 & 1 . & 0 & 1 \\
32 & & & +4 & +1 & & +1 / 4=371 / 4
\end{array}
$$

Binary Conversions

You can convert a decimal whole number to binary by reversing the procedure. Write the decimal weight of each column and place 1 's in the columns that sum to the decimal number.

Convert the decimal number 49 to binary.
The column weights double in each position to the right. Write down column weights until the last number is larger than the one you want to convert.

$$
\begin{array}{cccccccc}
26 & 25 & 24 & 2 & 2 & 2 & 2 & 20 . \\
64 & 32 & 16 & 8 & 4 & 2 & 1 . \\
\mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1 .} .
\end{array}
$$

Binary Conversions

You can convert decimal to any other base by repeatedly dividing by the base. For binary, repeatedly divide by 2 :

Convert the decimal number 49 to binary by repeatedly dividing by 2 .

You can do this by "reverse division" and the answer will read from left to right. Put quotients to the left and remainders on top.

Binary Addition

Add the binary numbers 00111 and 10101 and show the equivalent decimal addition.

$$
\begin{aligned}
& 0111 \\
& 00111 \\
& 10101 \\
& \frac{11100}{28}
\end{aligned}=\frac{7}{7} \begin{array}{r}
21 \\
\hline
\end{array}
$$

Binary Conversions

You can convert a decimal fraction to binary by repeatedly multiplying the fractional results of successive multiplications by 2 . The carries form the binary number.

Convert the decimal fraction 0.188 to binary by repeatedly multiplying the fractional results by 2 .

$0.188 \times 2=0.376$	carry $=0$
$0.376 \times 2=0.752$	carry $=0$
$0.752 \times 2=1.504$	carry $=1$
$0.504 \times 2=1.008$	carry $=1$
$0.008 \times 2=0.016$	carry $=0$
Answer $=.00110$ (for five significant digits)	
ELEC-2103	

ELEC-2103

Binary Addition

The rules for binary addition are

$$
\begin{array}{ll}
0+0=0 & \text { Sum }=0, \text { carry }=0 \\
0+1=0 & \text { Sum }=1, \text { carry }=0 \\
1+0=0 & \text { Sum }=1 \text {, carry }=0 \\
1+1=10 & \text { Sum }=0, \text { carry }=1
\end{array}
$$

When an input carry $=1$ due to a previous result, the rules are

$$
\begin{array}{ll}
1+0+0=01 & \text { Sum }=1 \text {, carry }=0 \\
1+0+1=10 & \text { Sum }=0, \text { carry }=1 \\
1+1+0=10 & \text { Sum }=0, \text { carry }=1 \\
1+1+1=10 & \text { Sum }=1 \text {, carry }=1
\end{array}
$$

Binary Subtraction

The rules for binary subtraction are

$$
\begin{aligned}
0-0 & =0 \\
1-1 & =0 \\
1-0 & =1 \\
10-1 & =1 \text { with a borrow of } 1
\end{aligned}
$$

Subtract the binary number 00111 from 10101 and show the equivalent decimal subtraction.

$$
\begin{aligned}
& 10101 \\
& \frac{00111}{01110}=
\end{aligned} \begin{array}{r}
21 \\
\hline 14
\end{array}
$$

1's Complement

The 1's complement of a binary number is just the inverse of the digits. To form the 1 's complement, change all 0 's to 1's and all 1's to 0's.

For example, the 1 's complement of 11001010 is
00110101
In digital circuits, the 1 's complement is formed by using inverters:

2's Complement

The 2's complement of a binary number is found by adding 1 to the LSB of the 1 's complement.

Recall that the 1 's complement of 11001010 is

$$
00110101 \text { (1's complement) }
$$

To form the 2's complement, add 1: $\frac{+1}{00110110}$

Slide Set 2
ELEC-2103

Signed Binary Numbers

There are several ways to represent signed binary numbers. In all cases, the MSB in a signed number is the sign bit, that tells you if the number is positive or negative.

Computers use a modified 2's complement for signed numbers. Positive numbers are stored in true form (with a 0 for the sign bit) and negative numbers are stored in complement form (with a 1 for the sign bit).

Signed Binary Numbers

Negative numbers are written as the 2's complement of the corresponding positive number.
The negative number -58 is written as:
$-58=11000110$ (complement form)
Sign bit Magnitude bits
An easy way to read a signed number that uses this notation is to assign the sign bit a column weight of -128 (for an 8 -bit number). Then add the column weights for the 1's.
Assuming that the sign bit $=-128$, show that $11000110=-58$ as a 2's complement signed number:

Column weights: -128 6432168421 .

$$
\begin{array}{rrrrrrrr}
1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\
-128+64 & & & +4+2
\end{array}=-58
$$

ELEC-2103

Floating Point Numbers

Floating point notation is capable of representing very large or small numbers by using a form of scientific notation. A 32-bit single precision number is illustrated.

Express the speed of light, c, in single precision floating point notation. ($c=0.2998 \times 10^{9}$)

In binary, $c=00010001110111101001010111000000_{2}$. In scientific notation, $c=1.001110111101001010111000000 \times 228$. $\mathrm{S}=0$ because the number is positive. $\mathrm{E}=28+127=15510=1001$ 10112. F is the next 23 bits after the first 1 is dropped. In floating point notation, $c=$| 0 | 10011011 | 00111011110100101011100 |
| :--- | :--- | :--- |

Arithmetic Operations with Signed Numbers

Using the signed number notation with negative numbers in 2's complement form simplifies addition and subtraction of signed numbers.
Rules for addition: Add the two signed numbers. Discard any final carries. The result is in signed form.
Examples:

| $00011110=+30$ |
| ---: | :--- |
| $00001111=+15$ |
| $00101101=+45$ |\quad| $00001110=+14$ |
| :---: |
| $\frac{11101111}{}=-17$ |
| $11111101=-3$ |\quad| $11111111=-1$ |
| :--- |
| Discard cáry |

Arithmetic Operations with Signed Numbers

Note that if the number of bits required for the answer is exceeded, overflow will occur. This occurs only if both numbers have the same sign. The overflow will be indicated by an incorrect sign bit.

Two examples are:

Arithmetic Operations with Signed Numbers

Rules for subtraction: 2's complement the subtrahend and add the numbers. Discard any final carries. The result is in signed form.
Repeat the examples done previously, but subtract:

$$
\begin{array}{rrrrr}
00011110 & (+30) & 00001110 & (+14) & 111111111 \\
-00001111 & -(+15) & -11101111 \\
-(-17) & -11111000 & -(-8) \\
\hline
\end{array}
$$

2's complement subtrahend and add:

Slide Set 2
ELEC-2103

Hexadecimal Numbers

Hexadecimal uses sixteen characters to represent numbers: the numbers 0 through 9 and the alphabetic characters A through F.

Large binary number can easily be converted to hexadecimal by grouping bits 4 at a time and writing the equivalent hexadecimal character.

Express 1001011000001110_{2} in
hexadecimal:
Group the binary number by 4-bits starting from the right. Thus, 960E

Decimal	Hexadecimal	Binary
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
10	A	1010
11	B	1011
12	C	1100
13	D	1101
14	E	1110
15	F	1111

Slide Set 2
ELEC-2103

Hexadecimal Numbers

Hexadecimal is a weighted number system. The column weights are powers of 16, which increase from right to left.

Express $1 \mathrm{~A}_{2} \mathrm{~F}_{16}$ in decimal.
Start by writing the column weights:
4096256161
1 A $2 \mathrm{~F}_{16}$
$1(4096)+10(256)+2(16)+15(1)=6703$

Decimal	Hexadecimal	Binary
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
10	A	1010
11	B	1011
12	C	1100
13	D	1101
14	E	1110
15	F	1111

Slide Set 2
ELEC-2103

Octal Numbers

Octal uses eight characters the numbers 0 through 7 to represent numbers.
There is no 8 or 9 character in octal.
Binary number can easily be converted to octal by grouping bits 3 at a time and writing the equivalent octal character for each group.

Express 1001011000001110_{2} in octal:
Group the binary number by 3-bits starting from the right. Thus, 113016

Decimal	Octal	Binary
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	10	1000
9	11	1001
10	12	1010
11	13	1011
12	14	1100
13	15	1101
14	16	1110
15	17	1111

Octal Numbers

Octal is also a weighted number system. The column weights are powers of 8 , which increase from right to left.

Express 3702_{8} in decimal.
Start by writing the column weights:
5126481
$\begin{array}{llll}3 & 7 & 0 & 2_{8}\end{array}$
$3(512)+7(64)+0(8)+2(1)=1986$

Decimal	Octal	Binary
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	10	1000
9	11	1001
10	12	1010
11	13	1011
12	14	1100
13	15	1101
14	16	1110
15	17	1111

BCD

Binary coded decimal (BCD) is a weighted code that is commonly used in digital systems when it is necessary to show decimal numbers such as in clock displays.

The table illustrates the difference between straight binary and BCD. BCD represents each decimal digit with a 4-bit code. Notice that the codes 1010 through 1111 are not used in BCD.

Decimal	Binary	BCD
0	0000	0000
1	0001	0001
2	0010	0010
3	0011	0011
4	0100	0100
5	0101	0101
6	0110	0110
7	0111	0111
8	1000	1000
9	1001	1001
10	1010	00010000
11	1011	00010001
12	1100	00010010
13	1101	00010011
14	1110	00010100
15	1111	00010101

BCD

You can think of BCD in terms of column weights in groups of four bits. For an 8 -bit BCD number, the column weights are: 804020108421 .

What are the column weights for the BCD number 100000110101 1001?
$800040002000100080040020010080402010 \quad 8 \quad 4 \quad 2 \quad 1$
Note that you could add the column weights where there is a 1 to obtain the decimal number. For this case:

$$
8000+200+100+40+10+8+1=8359_{10}
$$

Gray code

A shaft encoder is a typical application. Three IR emitter/detectors are used to encode the position of the shaft. The encoder on the left uses binary and can have three bits change together, creating a potential error. The encoder on the right uses gray code and only 1-bit changes, eliminating potential errors.

Gray code

Gray code is an unweighted code that has a single bit change between one code word and the next in a sequence. Gray code is used to avoid problems in systems where an error can occur if more than one bit changes at a time.

ELEC-2103

Decimal	Binary	Gray code
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0110
5	0101	0111
6	0110	0101
7	0111	0100
8	1000	1100
9	1001	1101
10	1010	1111
11	1011	1110
12	1100	1010
13	1101	1011
14	1110	1001
15	1111	1000

ASCII

ASCII is a code for alphanumeric characters and control characters. In its original form, ASCII encoded 128 characters and symbols using 7-bits. The first 32 characters are control characters, that are based on obsolete teletype requirements, so these characters are generally assigned to other functions in modern usage.

In 1981, IBM introduced extended ASCII, which is an 8bit code and increased the character set to 256 . Other extended sets (such as Unicode) have been introduced to handle characters in languages other than English.

Parity Method

The parity method is a method of error detection for simple transmission errors involving one bit (or an odd number of bits). A parity bit is an "extra" bit attached to a group of bits to force the number of 1's to be either even (even parity) or odd (odd parity).

> The ASCII character for "a" is 1100001 and for "A" is 1000001 . What is the correct bit to append to make both of these have odd parity?
> The ASCII "a" has an odd number of bits that are equal to 1 ; therefore the parity bit is 0 . The ASCII "A" has an even number of bits that are equal to 1 ; therefore the parity bit is 1 .

Selected Key Terms

Byte A group of eight bits
Floating-point A number representation based on scientific number notation in which the number consists of an exponent and a mantissa.

Hexadecimal
A number system with a base of 16 .
Octal A number system with a base of 8 .
BCD
Binary coded decimal; a digital code in which each of the decimal digits, 0 through 9 , is represented by a group of four bits.

1. For the binary number 1000, the weight of the column with the 1 is
a. 4
b. 6
c. 8
d. 10

Cyclic Redundancy Check

The cyclic redundancy check (CRC) is an error detection method that can detect multiple errors in larger blocks of data. At the sending end, a checksum is appended to a block of data. At the receiving end, the check sum is generated and compared to the sent checksum. If the check sums are the same, no error is detected.

Alphanumeric Consisting of numerals, letters, and other characters

Parity

Cyclic

ASCII American Standard Code for Information Interchange; the most widely used alphanumeric code. In relation to binary codes, the condition of evenness or oddness in the number of 1 s in a code group.
redundancy A type of error detection code.

Selected Key Terms

check (CRC)

Slide Set 2
2. The 2's complement of 1000 is
a. 0111
b. 1000
c. 1001
d. 1010
3. The fractional binary number 0.11 has a decimal value of
a. $1 / 4$
b. $1 / 2$
c. $3 / 4$
d. none of the above
4. The hexadecimal number 2C has a decimal equivalent value of
a. 14
b. 44
c. 64
d. none of the above
6. When two positive signed numbers are added, the result may be larger that the size of the original numbers, creating overflow. This condition is indicated by
a. a change in the sign bit
b. a carry out of the sign position
c. a zero result
d. smoke
5. Assume that a floating point number is represented in binary. If the sign bit is 1 , the
a. number is negative
b. number is positive
c. exponent is negative
d. exponent is positive
7. The number 1010 in BCD is
a. equal to decimal eight
b. equal to decimal ten
c. equal to decimal twelve
d. invalid
8. An example of an unweighted code is
a. binary
b. decimal
c. BCD
d. Gray code

Digital Electronics

Logic Gates And Boolean Algebra

The Inverter $\quad A>-\underline{X}$

The inverter performs the Boolean NOT operation. When the input is LOW, the output is HIGH; when the input is HIGH, the output is LOW.

Input	Output
A	X
LOW (0)	HIGH (1)
HIGH (1)	LOW(0)

The NOT operation (complement) is shown with an over bar Thus, the Boolean expression for an inverter is $X=\bar{A}$.

The AND Gate

The AND gate produces a HIGH output when all inputs are HIGH; otherwise, the output is LOW. For a 2-input gate, the truth table is

Inputs		Output
A	B	X
0	0	0
0	1	0
1	0	0
1	1	1

The AND operation is usually shown with a dot between the variables but it may be implied (no dot). Thus, the AND operation is written as $X=A \cdot B$ or $X=A B$.

The AND Gate

Example waveforms:

The AND operation is used in computer programming as a selective mask. If you want to retain certain bits of a binary number but reset the other bits to 0 , you could set a mask with 1 's in the position of the retained bits.

If the binary number 10100011 is ANDed with the mask 00001111, what is the result? 00000011

The OR Gate

The OR gate produces a HIGH output if any input is HIGH; if all inputs are LOW, the output is LOW. For a 2-input gate, the truth table is

Inputs		Output
A	B	X
0	0	0
0	1	1
1	0	1
1	1	1

The OR operation is shown with a plus sign (+) between the variables. Thus, the OR operation is written as $X=A+B$.

Example waveforms:

The OR operation can be used in computer programming to set certain bits of a binary number to 1 .
ASCII letters have a 1 in the bit 5 position for lower case letters and a 0 in this position for capitals. (Bit positions are numbered from right to left starting with 0 .) What will be the result if you OR an ASCII letter with the 8 -bit mask 00100000 ?

The resulting letter will be lower case.

Example waveforms:

The NAND gate is particularly useful because it is a "universal" gate - all other basic gates can be constructed from NAND gates.

How would you connect a 2-input NAND gate to form a basic inverter?

Example waveforms:

The NOR operation will produce a LOW if any input is HIGH.

The XOR Gate

The XOR gate produces a HIGH output only when both inputs are at opposite logic levels. The truth table is

Inputs		Output
A	B	X
0	0	0
0	1	1
1	0	1
1	1	0

The XOR operation is written as $X=\bar{A} B+A \bar{B}$.
Alternatively, it can be written with a circled plus sign between the variables as $X=A \oplus B$.

The XOR Gate

Example waveforms:

Notice that the XOR gate will produce a HIGH only when exactly one input is HIGH.

If the A and B waveforms are both inverted for the above waveforms, how is the output affected?

There is no change in the output.

Example waveforms:

Notice that the XNOR gate will produce a HIGH when both inputs are the same. This makes it useful for comparison functions.

If the A waveform is inverted but B remains the same, how is the output affected?

The output will be inverted.

The XNOR Gate $\begin{array}{lll}A-\square-1 & A \\ B & B & X\end{array}$
The XNOR gate produces a HIGH output only when both inputs are at the same logic level. The truth table is

Inputs		Output
A	B	X
0	0	1
0	1	0
1	0	0
1	1	1

The XNOR operation shown as $X=\bar{A} \bar{B}+A B$. Alternatively, the XNOR operation can be shown with a circled dot between the variables. Thus, it can be shown as $X=A \odot B$.

Slide Set 3
ELEC2103

DIP package SOIC package

Slide Set 3
ELEC2103

Fixed Function Logic

Some common gate configurations are shown.

Fixed Function Logic

Logic symbols show the gates and associated pin numbers.

Slide Set 3
ELEC2103

Fixed Function Logic

Data sheets include limits and conditions set by the manufacturer as well as DC and AC characteristics. For example, some maximum ratings for a 74 HC 00 A are:

Symbol	Parameter	Value	Unit
V_{Cc}	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0 V	V
$\mathrm{V}_{\text {in }}$	DC InputVoltage (Referenced to GND)	-0.5 to V6c +0.5 V	V
$V_{\text {out }}$	DC Output Voltage (Referenced to GND)	-0.5 to Vec +0.5 V	V
1 in	DC Input Current, per pin	± 20	mA
lout	DC Output Current, per pin	± 25	mA
${ }^{\text {cc }}$	DC Supply Current, V6c and GND pins	± 50	mA
B	Power Dissipation in Still Air, Plastic or Ceramic DIP \dagger SOIC Package \dagger TSSOP Package \dagger	$\begin{aligned} & 750 \\ & 500 \\ & 450 \end{aligned}$	mW
$\mathrm{T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
TL	Lead Temperature, 1 mm from Case for 10 Seconds Plastic DIP, SOIC, or TSSOP Package Ceramic DIP	$\begin{aligned} & 260 \\ & 300 \\ & \hline \end{aligned}$	${ }^{\circ} \mathrm{C}$

Slide Set 3
ELEC2103

Selected Key Terms

Inverter A logic circuit that inverts or complements its inputs.

Truth table
A table showing the inputs and corresponding output(s) of a logic circuit

Timing diagram

Boolean algebra AND gate

A diagram of waveforms showing the proper time relationship of all of the waveforms.

The mathematics of logic circuits.

A logic gate that produces a HIGH output only when all of its inputs are HIGH.

Programmable Logic

A Programmable Logic Device (PLD) can be programmed to implement logic. There are various technologies available for PLDs. Many use an internal array of AND gates to form logic terms. Many PLDs can be programmed multiple times.

Selected Key Terms

OR gate A logic gate that produces a HIGH output when one or more inputs are HIGH.

NAND gate A logic gate that produces a LOW output only when all of its inputs are HIGH.
NOR gate
A logic gate that produces a LOW output when one or more inputs are HIGH.

Exclusive-OR
gate
Exclusive-NOR
gate A logic gate that produces a LOW output only when its two inputs are at opposite levels.

1. The truth table for a 2 -input AND gate is

Inputs	Output	b.	Inputs	Output
A B	X		A B	X
- 0	0		$0 \quad 0$	1
a. 001	1		01	0
10	1		10	0
11	0		11	0
Inputs	Output		Inputs	Output
	X		A B	X
	0			0
c. $\quad 0 \quad 1$	0	d.	01	1
10	0		10	1
11	1		11	1

2. The truth table for a 2-input NOR gate is
a.

Inputs	
A	Output
0	B
0	0
0	1
1	0
1	1
1	1

b.

Inputs		
A	Output	
0	0	X
0	1	0
1	0	0
1	1	0
Inputs		Output
A	B	X
0	0	0
0	1	1
1	0	1
1	1	1

Slide Set 3
ELEC2103
3. The truth table for a 2-input XOR gate is
a.

Inputs		Output
A	B	X
0	0	0
0	1	1
1	0	1
1	1	0

c.

Inputs		Output
A	B	X
0	0	0
0	1	0
1	0	0
1	1	1

b.

Inputs		Output
A	B	X
0	0	1
0	1	0
1	0	0
1	1	0

d.

Inputs		Output
A	B	X
0	0	0
0	1	1
1	0	1
1	1	1

ELEC2103

a. OR gate
b. AND gate
c. NOR gate
d. XOR gate
5. The symbol ${ }_{B}^{A} \square \underbrace{X}$ is for $\mathrm{a}(\mathrm{n})$
a. OR gate
b. AND gate
c. NOR gate
d. XOR gate
6. A logic gate that produces a HIGH output only when all of its inputs are HIGH is a(n)
a. OR gate
b. AND gate
c. NOR gate
d. NAND gate
7. The expression $X=A \oplus B$ means
a. A OR B
b. A AND B
c. A XOR B
d. A XNOR B
9. A 2-input gate produces a HIGH output only when the inputs agree. This type of gate is a(n)
a. OR gate
b. AND gate
c. NOR gate
d. XNOR gate
8. A 2-input gate produces the output shown. (X represents the output.) This is a(n)
a. OR gate
b. AND gate
c. NOR gate
d. NAND gate

Boolean Addition

In Boolean algebra, a variable is a symbol used to represent an action, a condition, or data. A single variable can only have a value of 1 or 0 .
The complement represents the inverse of a variable and is indicated with an overbar. Thus, the complement of A is \bar{A}.

A literal is a variable or its complement.
Addition is equivalent to the OR operation. The sum term is 1 if one or more if the literals are 1 . The sum term is zero only if each literal is 0 .

Determine the values of A, B, and C that make the sum term of the expression $\bar{A}+B+\bar{C}=0$?

Each literal must $=0$; therefore $A=1, B=0$ and $C=1$.

Boolean Multiplication

In Boolean algebra, multiplication is equivalent to the AND operation. The product of literals forms a product term. The product term will be 1 only if all of the literals are 1 .

What are the values of the A, B and C if the product term of $A \cdot \bar{B} \cdot \bar{C}=1$?
Each literal must $=1$; therefore $A=1, B=0$ and $C=0$.

The associative laws are also applied to addition and multiplication. For addition, the associative law states When ORing more than two variables, the result is the same regardless of the grouping of the variables.

$$
A+(B+C)=(A+B)+C
$$

For multiplication, the associative law states
When ANDing more than two variables, the result is the same regardless of the grouping of the variables.

$$
A(B C)=(A B) C
$$

Rules of Boolean Algebra

1. $A+0=A \quad$ (Law of Union)
2. $A+1=1$ (Law of Union)
3. A. $0=0 \quad$ (Law of Intersection)
4. $\mathbf{A} .1=\mathbf{A}$ (Law of Intersection)
5. $A+A=A$ (Law of Idempotency)
6. $\boldsymbol{A} \cdot \boldsymbol{A}=\mathrm{A}$ (Law of Idempotency)
7. $A+\bar{A}=1$ (Complementary Law)
8. $A \cdot \bar{A}=0 \quad$ (Complementary Law)
9. $\overline{\bar{A}}=A \quad$ (Double Negative Law)
10. $A+A B=A$ (Law of Absorption)
11. $A+\bar{A} B=A+B \quad$ (Law of Common Identities)
12. $A+B C=(A+B)(A+C) \quad$ (Distributive Law)

Commutative Laws

The commutative laws are applied to addition and multiplication. For addition, the commutative law states
In terms of the result, the order in which variables are ORed makes no difference.

$$
A+B=B+A
$$

For multiplication, the commutative law states In terms of the result, the order in which variables are ANDed makes no difference.

$$
A B=B A
$$

Distributive Law

The distributive law is the factoring law. A common variable can be factored from an expression just as in ordinary algebra. That is

$$
A B+A C=A(B+C)
$$

The distributive law can be illustrated with equivalent circuits:

Slide Set 3
ELEC2103

Rules of Boolean Algebra

Rules of Boolean algebra can be illustrated with Venn diagrams. The variable A is shown as an area.
The rule $A+A B=A$ can be illustrated easily with a diagram. Add an overlapping area to represent the variable B.
The overlap region between A and B represents $A B$.

The diagram visually shows that $A+A B=A$. Other rules can be illustrated with the diagrams as well.

Rules of Boolean Algebra

Illustrate the rule $A+\bar{A} B=A+B$ with a Venn diagram.

This time, \bar{A} is represented by the blue area and B again by the red circle. The intersection represents $\overline{A B}$. Notice that $A+\bar{A} B=A+B$

Slide Set 3
ELEC2103

Rules of Boolean Algebra

Three areas represent the variables A, B, and C.
The area representing $A+B$ is shown in yellow.
The area representing $A+C$ is shown in red.
The overlap of red and is shown in orange.
The overlapping area between B and C represents $B C$. ORing with gives the same area as before.

De Morgan's Theorem

De Morgan's Theorem

Rules of Boolean Algebra

Rule 12, which states that $(A+B)(A+C)=A+B C$, can be proven by applying earlier rules as follows:

$$
\begin{aligned}
(A+B)(A+C) & =A A+A C+A B+B C \\
& =A+A C+A B+B C \\
& =A(1+C+B)+B C \\
& =A \cdot 1+B C \\
& =A+B C
\end{aligned}
$$

This rule is a little more complicated, but it can also be shown with a Venn diagram, as given on the following slide...

DeMorgan's 1 ${ }^{\text {st }}$ Theorem
The complement of a product of variables is equal to the sum of the complemented variables.

$$
\overline{A B}=\bar{A}+\bar{B}
$$

Applying DeMorgan's first theorem to gates:

Slide Set 3
ELEC2103

DeMorgan's $2^{\text {nd }}$ Theorem

The complement of a sum of variables is equal to the product of the complemented variables.

$$
\overline{A+B}=\bar{A} \cdot \bar{B}
$$

Applying DeMorgan's second theorem to gates:

Apply DeMorgan's theorem to remove the overbar covering both terms from the expression $X=\overline{\bar{C}+D}$.

To apply DeMorgan's theorem to the expression, you can break the overbar covering both terms.

Boolean Analysis of Logic Circuits

Combinational logic circuits can be analyzed by writing the expression for each gate and combining the expressions according to the rules for Boolean algebra.

Apply Boolean algebra to derive the expression for X.
Write the expression for each gate:

Applying DeMorgan's theorem and the distribution law:

$$
x=C(\bar{A} \bar{B})+D=\bar{A} \bar{B} C+D
$$

Slide Set 3
ELEC2103

SOP Standard form

In SOP standard form, every variable in the domain must appear in each term. This form is useful for constructing truth tables or for implementing logic in PLDs.
You can expand a non-standard term to standard form by multiplying the term by a term consisting of the sum of the missing variable and its complement.

$$
\text { Convert } X=\bar{A} \bar{B}+A B C \text { to standard form. }
$$

The first term does not include the variable C. Therefore, multiply it by the $(C+\bar{C})$, which $=1$:

$$
\begin{aligned}
X & =\bar{A} \bar{B}(C+\bar{C})+A B C \\
& =\bar{A} \bar{B} C+\bar{A} \bar{B} \bar{C}+A B C
\end{aligned}
$$

Karnaugh maps

The Karnaugh map (K-map) is a tool for simplifying combinational logic with 3 or 4 variables. For 3 variables, 8 cells are required (2^{3}).

The map shown is for three variables labelled A, B, and C. Each cell represents one possible product term.

Each cell differs from an adjacent cell by only one variable.

SOP and POS forms

Boolean expressions can be written in the sum-of-products form (SOP) or in the product-of-sums form (POS). These forms can simplify the implementation of combinational logic, particularly with PLDs. In both forms, an overbar cannot extend over more than one variable.
An expression is in SOP form when two or more product terms are summed as in the following examples:
$\bar{A} \bar{B} \bar{C}+A B$
$A B \bar{C}+\bar{C} \bar{D}$
$C D+\bar{E}$

An expression is in POS form when two or more sum terms are multiplied as in the following examples:
$(A+B)(\bar{A}+C)$
$(A+B+\bar{C})(B+D) \quad(\bar{A}+B) C$

Slide Set 3
ELEC2103

POS Standard form

In POS standard form, every variable in the domain must appear in each sum term of the expression.
You can expand a nonstandard POS expression to standard form by adding the product of the missing variable and its complement and applying rule 12 , which states that $(A+B)(A+C)=A+B C$.

Convert $X=(\bar{A}+\bar{B})(A+B+C)$ to standard form.

The first sum term does not include the variable C.
Therefore, add $C \bar{C}$ and expand the result by rule 12 .

$$
\begin{aligned}
X & =(\bar{A}+\bar{B}+C \bar{C})(A+B+C) \\
& =(\bar{A}+\bar{B}+C)(\bar{A}+\bar{B}+\bar{C})(A+B+C)
\end{aligned}
$$

Slide Set 3
ELEC2103

Karnaugh maps

Cells are usually labeled using 0 's and 1 's to represent the variable and its complement.

Slide Set 3

The numbers are entered in gray code, to force adjacent cells to be different by only one variable.

Ones are read as the true variable and zeros are read as the complemented variable.

ELEC2103

Karnaugh maps

Alternatively, cells can be labelled with the variable letters. This makes it simple to read, but it takes more time preparing the map.

Read the terms for the yellow cells.

The cells are $\bar{A} B \bar{C}$ and $\overline{A B} C$.

Slide Set 3 ELEC2103

Karnaugh maps

K-maps can simplify combinational logic by grouping cells and eliminating variables that change.

1. Group the 1 's into two overlapping groups as indicated.
2. Read each group by eliminating any variable that changes across a boundary.
3. The vertical group is read $\bar{A} \bar{C}$.
4. The horizontal group is read $\bar{A} B$.

$$
X=\bar{A} \bar{C}+\bar{A} B
$$

ELEC2103

Karnaugh maps

A 4-variable map has an adjacent cell on each of its four boundaries as shown.

Each cell is different only by one variable from an adjacent cell.
Grouping follows the rules given in the text.
The following slide shows an example of reading a four variable map using binary numbers for the variables...

Selected Key Terms

Variable A symbol used to represent a logical quantity that can have a value of 1 or 0 , usually designated by an italic letter.

Complement The inverse or opposite of a number. In Boolean algebra, the inverse function, expressed with a bar over the variable.

Sum term The Boolean sum of two or more literals equivalent to an OR operation.

Product term The Boolean product of two or more literals equivalent to an AND operation.

Selected Key Terms

Sum-of- A form of Boolean expression that is basically the products (SOP) ORing of ANDed terms.

Product of A form of Boolean expression that is basically the sums (POS) ANDing of ORed terms.

Karnaugh map An arrangement of cells representing combinations of literals in a Boolean expression and used for systematic simplification of the expression.

Quiz.

1. The associative law for addition is normally written as
a. $A+B=B+A$
b. $(A+B)+C=A+(B+C)$
c. $A B=B A$
d. $A+A B=A$
2. The Boolean equation $A B+A C=A(B+C)$ illustrates
a. the distribution law
b. the commutative law
c. the associative law
d. De Morgan's theorem

Quiz

3. The Boolean expression A. 1 is equal to
a. A
b. B
c. 0
d. 1
4. The Boolean expression $A+1$ is equal to
a. A
b. B
c. 0

Slide Set 3
d. 1

ELEC2103

Quiz

6. A Boolean expression that is in standard SOP form is
a. the minimum logic expression
b. contains only one product term
c. has every variable in the domain in every term
d. none of the above
7. Adjacent cells on a Karnaugh map differ from each other by
a. one variable
b. two variables
c. three variables
d. answer depends on the size of the map

Quiz.

8. The minimum expression that can be read from the Karnaugh map shown is
a. $X=A$
b. $X=\bar{A}$
c. $X=B$
d. $X=\bar{B}$

Quiz.

9. The minimum expression that can be read from the Karnaugh map shown is
a. $X=A$
b. $X=\bar{A}$
c. $X=B$
d. $X=\bar{B}$

Digital Electronics

Digital Logic Families

Implementation Technologies

- Two major digital IC technologies
- CMOS (Complementary Metal Oxide Semiconductor)
- TTL (Transistor-Transistor Logic)
- The logic operations of NOT, AND, OR, NAND, NOR, XOR, XNOR are technology-independent.
- Different in performance characteristics

CMOS INVERTER

Slide Set 4
ELEC2103

TTL

- Transistor-Transistor Logic
- Implemented by Bipolar Junction Transistors (BJTs)

- Not sensitive to electrostatic discharge
- TTL logic gates operate from 5V supply

TTL INVERTER

- Complementary Metal-Oxide Semiconductor Field-Effect Transistors (MOSFETs)
- Low Power Dissipation
- High Noise Immunity
- CMOS categories
- 5 V CMOS
- 3.3 V CMOS
- 2.5 V CMOS
- 1.8 V CMOS

Implemented by Metal-Oxide Semiconductor

P-channel
ne

CMOS

\square

ECL

- Emitter-Coupled Logic
- Bipolar technology
- Much faster than TTL
- High fan-out is possible
- Higher power consumption

CMOS , TTL, ECL

- Speed (high to low)
- ECL \rightarrow TTL \rightarrow CMOS
- Power Dissipation (Low to high)
- CMOS \rightarrow TTL \rightarrow ECL

Some common IC gates

Some common IC gates

- XX (in table 1) indicates the IC series
- For example:
- HC - High-speed CMOS
- AC - Advanced CMOS
- LV - Low-voltage CMOS
- S - Schottky TTL
- LS - Low-power Schottky TTL

7430

Performance Characteristics and Parameters

- Switching Speed (Propagation delay time)
- Power dissipation
- Fan-in
- Fan-out/drive capability
- Noise Margin
- Packaging Density

Propagation Delay Time, t_{p}

Input

Output

Propagation Delay Time, t_{p}

- Depends on the switching speed that a logic circuit can operate.
- Low speed circuit or high speed circuit
- Definition of t_{p}
- Time interval between the application of an input pulse and the occurrence of the resulting output pulse.
- 2 measurements
- $t_{\text {PHL }}-t_{p}$ with the output changing from HIGH to LOW.
- $t_{P L H}-t_{p}$ with the output changing from LOW to HIGH.

Power Dissipation, P_{D}

- Power Dissipation =

DC supply voltage x average supply current

$$
P_{D}=V_{C C}\left(\frac{I_{C C H}+I_{C C L}}{2}\right)
$$

- The above calculation is based on 50% duty cycle.
- VCC—supply voltage
- ICCL—supply current for the LOW output state
- ICCH—supply current for the HIGH output state

Fan-in

- The fan-in of a gate - the number of inputs connected to the gate.
- The larger the fan-in is, the larger the propagation delay of the gate will be.
Fan-in \uparrow, speed
- Typical gate has a fan-in of 1 or 2 .

ELEC2103

Fan-out

- The fan-out of a gate-the maximum number of inputs that are connected to the output of the gate and
- still maintain the output voltage levels within specified limits. (TTL)
- Still maintain the operation frequency within specified limit. (CMOS)

■

Noise Immunity

- In order not to be affected by noise, the logic circuit must have noise immunity.
- Noise immunity-the ability to tolerate a certain amount of unwanted voltage fluctuation on its inputs without changing its output state.

Noise Immunity

- Noise -unwanted voltage that is induced in electrical circuits.
- Noise may present a threat to the proper operation of the circuit.

3.3V		Logic levels
	Logic 1 (HIGH)	
2V		
	unallowed	
0.8 V		
	Logic 0 (LOW)	
OV		

NOISE MARGIN

Acceptable TTL Gate	Acceptable TTL Gate
Input Signal Levels	Output Signal Levels

Acceptable CMOS Gate Input Signal Levels

Slide Set 4

Acceptable CMOS Gate

Packaging Densitys

Complexity	Gates per chip
Small-scale integration (SSI)	<12
Medium-scale integration (MSI)	12 to 99
Large-scale integration (LSI)	100 to 9999
Very large-scale integration (VLSI)	10,000 to 99,999
Ultra large-scale integration (ULSI)	100,000 to 999,999
Giga-scale integration (GSI)	$1,000,000$ or more

Digital Electronics

Combinational Logic Analysis

Combinational Logic Circuits

An example of an SOP implementation is shown. The SOP expression is an AND-OR combination of the input variables and the appropriate complements.

Exclusive-OR Logic

Exclusive-OR Logic

The truth table for an exclusive-OR gate is Notice that the output is HIGH whenever A and B disagree.
The Boolean expression is $X=\bar{A} B+A \bar{B}$

The circuit can be drawn as

Symbols:

Distinctive shape

Combinational Logic Circuits

In Sum-of-Products (SOP) form, basic combinational circuits can be directly implemented with AND-OR combinations if the necessary complement terms are available.

Slide Set 5
ELEC2103 2

Combinational Logic Circuits

When the output of a SOP form is inverted, the circuit is called an AND-OR-Invert circuit. The AOI configuration lends itself to product-of-sums (POS) implementation.
An example of an AOI implementation is shown. The output expression can be changed to a POS expression by applying DeMorgan's theorem twice.

Exclusive-NOR Logic

The truth table for an exclusive-NOR gate is
Notice that the output is HIGH whenever A and B agree.
The Boolean expression is $X=\bar{A} \bar{B}+A B$

The circuit can be drawn as

Symbols:

Implementing Combinational Logic

Implementing a SOP expression is done by first forming the AND terms; then the terms are ORed together.
Show the circuit that will implement the Boolean expression $X=A B C+A B D$
$+B D \bar{E}$. (言ssume $\overline{\text { that the the variables and their complements are available.) }}$
Start by forming the terms using three 3-input AND gates.
Then combine the three terms using a 3 -input OR gate.

Circuit (a): XOR, inputs agree, output is LOW, LED is ON. Circuit (b): XNOR, inputs disagree, output is LOW, LED is ON. Circuit (c): XOR, inputs disagree, output is HIGH, LED is OFF.

ELEC2103

$$
X=\bar{A} B \bar{C}+A \bar{B} D+B \bar{D} E
$$

Karnaugh Map Implementation

For basic combinational logic circuits, the Karnaugh map can be read and the circuit drawn as a minimum SOP.

A Karnaugh map is drawn from a truth table. Read the minimum SOP expression and draw the circuit.

NAND Logic

Convert the circuit in the previous example to one that uses only NAND gates.

Recall from Boolean algebra that double inversion cancels By adding inverting bubbles to above circuit, it is easily converted to NAND gates:

NAND gates are sometimes called universal gates because they can be used to produce the other basic Boolean functions.

Universal Gates

Universal Gates

NOR gates are also universal gates and can form all of the basic gates.

Recall from DeMorgan's theorem that $\overline{A B}=\bar{A}+\bar{B}$. By using equivalent symbols, it is simpler to read the logic of SOP forms. The earlier example shows the idea:

The logic is easy to read if you (mentally) cancel the two connected bubbles on a line.

NOR Logic

Alternatively, DeMorgan's theorem can be written as $\overline{A+B}=\bar{A} \bar{B}$. By using equivalent symbols, it is simpler to read the logic of POS forms. For example,

Pulsed Waveform

For combinational circuits with pulsed inputs, the output can be predicted by developing intermediate outputs and combining the result. For example, the circuit shown can be analyzed at the outputs of the OR gates:

Again, the logic is easy to read if you cancel the two connected bubbles on a line.

Selected Key Terms

Universal gate

Either a NAND or a NOR gate. The term universal refers to a property of a gate that permits any logic function to be implemented by that gate or by a combination of gates of that kind.

Negative-OR The dual operation of a NAND gate when the inputs are active-LOW.

Negative-AND
The dual operation of a NOR gate when the inputs are active-LOW.

3. An LED that should be ON is
a. LED-1
b. LED-2
c. neither
d. both

5. Reading the Karnaugh map, the logic expression is
a. $\bar{A} \bar{C}+\bar{A} B$
b. $\bar{A} B+A \bar{C}$
c. $A \bar{B}+B \bar{C}$
d. $A B+\overline{A C}$

6. The circuit shown will have identical logic out if all gates are changed to
a. AND gates
b. OR gates
c. NAND gates
d. NOR gates

7. The two types of gates which are called universal gates are
a. AND/OR
b. NAND/NOR
c. AND/NAND
d. OR/NOR

8. The circuit shown is equivalent to an
a. AND gate
b. XOR gate
c. OR gate

d. none of the above
9. The circuit shown is equivalent to
a. an AND gate
b. an XOR gate
c. an OR gate

d. none of the above
10. During the first three intervals for the pulsed circuit shown, the output of
a. G1 is LOW and G2 is LOW
b. $G 1$ is LOW and $G 2$ is HIGH
c. G1 is HIGH and G2 is LOW
d. G1 is HIGH and G2 is HIGH

Digital Electronics

Functions of Combinational Logic

Half-Adder

Basic rules of binary addition are performed by a half adder, which has two binary inputs (A and B) and two binary outputs (Carry out and Sum).
The inputs and outputs can be summarized on a truth table.

The logic symbol and equivalent circuit are:

Slide Set 6
ELEC2103

Full-Adder

By contrast, a full adder has three binary inputs (A, B, and Carry in) and two binary outputs (Carry out and Sum). The truth table summarizes the operation.

A full-adder can be constructed from two half adders as shown:

Slide Set 6

ELEC2103

Symbol

Full-Adder

Notice that the result from the previous example can be read directly on the truth table for a full adder.

Parallel Adders

The logic symbol for a 4-bit parallel adder is shown. This 4-bit adder includes a carry in (labeled $\left(C_{0}\right)$ and a Carry out (labeled $\left.C_{4}\right)$.

The 74LS283 is an example. It features look-ahead carry, which adds logic to minimize the output carry delay. For the 74LS283, the maximum delay to the output carry is 17 ns .

Comparators

The function of a comparator is to compare the magnitudes of two binary numbers to determine the relationship between them. In the simplest form, a comparator can test for equality using XNOR gates.

How could you test two 4-bit numbers for equality?

AND the outputs of four XNOR gates.

Slide Set 6 ELEC2103

Comparators

IC comparators can be expanded using the cascading inputs as shown. The lowest order comparator has a HIGH on the $A=B$ input.

Decoders

A decoder is a logic circuit that detects the presence of a specific combination of bits at its input. Two simple decoders that detect the presence of the binary code 0011 are shown. The first has an active HIGH output; the second has an active LOW output.

Decoders

Assume the output of the decoder shown is a logic 1 . What are the inputs to the decoder?

Decoders

IC decoders have multiple outputs to decode any combination of inputs. For example the binary-to-decimal decoder shown here has 16 outputs - one for each combination of binary inputs.

For the input shown, what is the output?

Decoders

A specific integrated circuit decoder is the 74 HC 154 (shown as a 4-to-16 decoder). It includes two active LOW chip select lines which must be at the active level to enable the outputs. These lines can be used to expand the decoder to larger inputs.

Slide Set 6 ELEC2103

Decoders

BCD-to-decimal decoders accept a binary coded decimal input and activate one of ten possible decimal digit indications.

Assume the inputs to the 74 HC 42 decoder are the sequence 0101,0110 , 0011 , and 0010. Describe the output.

All lines are HIGH except for one active output, which is LOW. The active outputs are $5,6,3$, and 2 in that order.

BCD Decoder/Driver

Another useful decoder is the 74LS47. This is a BCD-toseven segment display with active LOW outputs.

The $a-g$ outputs are designed for much higher current than most devices (hence the word driver in the name).

Slide Set 6 ELEC2103

BCD Decoder/Drive

Here the 7447A is an connected to an LED seven segment display. Notice the current limiting resistors, required to prevent overdriving the LED display.

BCD Decoder/Driver

Trailing zero suppression blanks unnecessary trailing zeros to the right of the decimal point as illustrated here. The $R B I$ input is connected to the $B I / R B O$ output of the following decoder.

ELEC2103

19

Encoders

An encoder accepts an active logic level on one of its inputs and converts it to a coded output, such as BCD or binary.

The decimal to BCD is an encoder with an input for each of the ten decimal digits and four outputs that represent the BCD code for the active digit. The basic logic diagram is shown. There is no zero input because the outputs are all LOW when the input is zero.

Encoders

Show how the decimal-to-BCD encoder converts the decimal number 3 into a BCD 0011.
The top two OR gates have ones as indicated with the red lines. Thus the output is 0111 .

Encoders

The 74HC147 is an example of an IC encoder. It is has ten active-LOW inputs and converts the active input to an
active-LOW BCD output.

This device offers additional flexibility in that it is a priority encoder. This means that if more than one input is active, the one with the highest order decimal digit will be active.

The next slide shows an application ...

Slide Set 6
ELEC2103

Encoders
Keyboard encoder

Code converters

There are various code converters that change one code to another. Two examples are the four bit binary-to-Gray converter and the Gray-to-binary converter.
347 Show the conversion of binary 0111 to Gray and back.

Multiplexers

A multiplexer (MUX) selects one data line from two or more input lines and routes data from the selected line to the output. The particular data line that is selected is determined by the select inputs.

Two select lines are shown here to choose any of the four data inputs.

Which data line is selected if $S_{1} S_{0}=10$? $D 2$

Demultiplexers

A demultiplexer (DEMUX) performs the opposite function from a MUX. It switches data from one input line to two or more data lines depending on the select inputs.

The 74LS138 was introduced previously as a decoder but can also serve as a DEMUX. When connected as a DEMUX, data is applied to one of the enable inputs, and routed to the selected output line depending on the select variables. Note that the outputs are active-LOW as illustrated in the following example...
 ELEC2103

Demultiplexers

Determine the outputs, given the inputs shown.

The output logic is opposite to the input because of the active-LOW convention. (Red shows the selected line).

Y_{0}
Y_{1}
Y_{1}
Y_{2}
Y_{3}
Y_{4}
Y_{5}
Y_{6}
Y_{7}

Parity Generators/Checkers

Parity is an error detection method that uses an extra bit appended to a group of bits to force them to be either odd or even. In even parity, the total number of ones is even; in odd parity the total number of ones is odd.

The ASCII letter S is 1010011 . Show the parity bit for the letter S with odd and even parity.

S with odd parity = 11010011
S with even parity $=01010011$

Parity Generators/Checkers

The 74LS280 can be used to generate a parity bit or to check an incoming data stream for even or odd parity.
Checker: The 74LS280 can test codes with up to 9 bits. The even output will normally be HIGH if the data lines have even parity; otherwise it will be LOW. Likewise, the odd output will normally be HIGH if the data lines have odd parity; otherwise it will be LOW. Data

Generator: To generate even parity, the parity bit is taken from the odd parity output. To generate odd parity, the output is taken from the even parity output.

	Selected Key Terms
Decoder	A digital circuit that converts coded information into a familiar or noncoded form.
Encoder	A digital circuit that converts information into a
coded form.	

1. For the full-adder shown, assume the input bits are as shown with $A=0, B=0, C$ in $=1$. The Sum and C will be
a. Sum $=0$ Cout $=0$
b. Sum $=0$ Cout $=1$
c. Sum $=1$ Cout $=0$
d. Sum $=1$ Cout $=1$

2. The output will be LOW if
a. $A<B$
b. $A>B$
c. both a and b are correct
d. $A=B$

3. Assume you want to decode the binary number 0011 with an active-LOW decoder. The missing gate should be

> a. an AND gate
> b. an OR gate
> c. a NAND gate
> d. a NOR gate

3. If you expand two 4 -bit comparators to accept two 8 -bit numbers, the output of the least significant comparator is
a. equal to the final output
b. connected to the cascading inputs of the most significant comparator
c. connected to the output of the most significant comparator
d. not used

(

5. Assume you want to decode the binary number 0011 with an active-HIGH decoder. The missing gate should be
a. an AND gate
b. an OR gate
c. a NAND gate
d. a NOR gate

Quiz

7. The decimal-to-binary encoder shown does not have a
8. The 74138 is a 3 -to- 8 decoder. Together, two of these ICs zero input. This is because
a. one decoder to the LSBs of the input; the other decoder to the MSBs of the input
b. all chip select lines to ground
c. all chip select lines to their active levels
d. one chip select line on each decoder to the input MSB
a. when zero is the input, all lines should be LOW
b. zero is not important
c. zero will produce illegal logic levels
d. another encoder is used for zero

9. If the data select lines of the MUX are $S 1 S 0=11$, the output will be
a. LOW
b. HIGH
c. equal to $D 0$
d. equal to D3

10. The 74138 decoder can also be used as
a. an encoder
b. a DEMUX
c. a MUX
d. none of the above
11. The 74LS280 can generate even or odd parity. It can also be used as
a. an adder
b. a parity tester
c. a MUX
d. an encoder

Digital Electronics

Latches, Flip-Flops, Timers

Latches

A latch is a temporary storage device that has two stable states (bistable). It is a basic form of memory.
The S-R (Set-Reset) latch is the most basic type. It can be constructed from NOR gates or NAND gates. With NOR gates, the latch responds to active-HIGH inputs; with NAND gates, it responds to active-LOW inputs.

NOR Active-HIGH Latch
NAND Active-LOW Latch

ELEC2103
2

Latches

The active-HIGH S - R latch is in a stable (latched) condition when both inputs are LOW.
Assume the latch is initially RESET $(Q=0)$ and the inputs are at their inactive level (0). To SET the latch ($Q=1$), a momentary HIGH signal is applied to the S input while the R remains LOW.

To RESET the latch $(Q=0)$, a momentary HIGH signal is applied to the R input while the S remains LOW.

Latches
A gated latch is a variation on the basic latch.
The gated latch has an additional input, called enable ($E N$) that must be HIGH in order for the latch to respond to the S and R inputs.

Show the Q output with relation to the input signals.

Assume Q starts LOW.
Keep in mind that S and R are only active when $E N$ is HIGH.

ELEC2103

QUAD SR LATCHES

Latches
The active-LOW $\bar{S}-\bar{R}$ latch is available as the 74LS279A IC.

It features four internal latches with two having two \bar{S} inputs. To SET any of the latches, the \bar{S} line is pulsed low. It is available in several packages.
$\bar{S}-\bar{R}$ latches are frequently used for switch debounce circuits as shown:

The active-LOW $\bar{S}-\bar{R}$ latch is in a stable (latched) condition when both inputs are HIGH.
Assume the latch is initially RESET $-\ulcorner\bar{S}$
$(Q=0)$ and the inputs are at their
inactive level (1). To SET the latch
$(Q=1)$, a momentary LOW signal \bar{S} input while the
is applied to the
remains HIGH.
To RESET the latch a momentary
LOW is applied to the \bar{R} input
while \bar{S} is HIGH.
Never apply an active set and
reset at the same time (invalid). reset at the same time (invalid).

Latches

Slide Set 7
The symbel for
an
SQ utch.

Latches

The D latch is an variation of the $S-R$ latch but combines the S and R inputs into a single D input as shown:

A simple rule for the D latch is
Q follows D when the Enable is active.

Latches

The truth table for the D latch summarizes its operation. If $E N$ is LOW, then there is no change in the output and it is latched.

Flip-flops

A flip-flop differs from a latch in the manner it changes states. A flip-flop is a clocked device, in which only the clock edge determines when a new bit is entered.

The active edge can be positive or negative.

Notice that the Enable is not active during these times, so the output is latched.

Flip-flops

The truth table for a positive-edge triggered D flip-flop shows an up arrow to remind you that it is sensitive to its D input only on the rising edge of the clock; otherwise it is latched. The truth table for a negative-edge triggered D flip-flop is identical except for the direction of the arrow.

(a) Positive-edge triggered

(b) Negative-edge triggered

Flip-flops
The J-K flip-flop is more versatile than the D flip flop. In addition to the clock input, it has two inputs, labeled J and K. When both J and $K=1$, the output changes states (toggles) on the active clock edge (in this case, the rising edge).

Flip-flops

50.7n|e

Determine the Q output for the $J-K$ flip-flop, given the inputs shown.

Notice that the outputs change on the leading edge of the clock.

Flip-flops

Synchronous inputs are transferred in the triggering edge of the clock (for example the D or $J-K$ inputs). Most flipflops have other inputs that are asynchronous, meaning they affect the output independent of the clock.

Two such inputs are normally labeled preset (PRE) and clear (CLR). These inputs are usually active LOW. A J-K flip flop with active LOW preset and CLR is shown.

Flip-flop Characteristics

Propagation delay time is specified for the rising and falling outputs. It is measured between the 50% level of the clock to the 50% level of the output transition.

The typical propagation delay time for the 74AHC family (CMOS) is 4 ns . Even faster logic is available for specialized applications.

Flip-flops

DR919
Determine the Q output for the $J-K$

D flip-flop hardwired for
For example, if Q is LOW, Q is HIGH and the flip-flop will toggle on the next clock edge. Because the flip-flop only changes on the active edge, the output will only change once for each clock pulse.
a toggle mode
 都

Flip-flops

A D-flip-flop does not have a toggle mode like the J-K flipflop, but you can hardwire a toggle mode by connecting \bar{Q} back to D as shown. This is useful in some counters as you will see in Chapter 8.

Flip-flop Characteristics

Another propagation delay time specification is the time required for an asynchronous input to cause a change in the output. Again it is measured from the 50% levels. The 74AHC family has specified delay times under 5 ns .

Flip-flop Characteristics

Set-up time and hold time are times required before and after the clock transition that data must be present to be reliably clocked into the flip-flop.

Setup time is the minimum time for the data to be present before the clock.

Hold time is the minimum time for the data to remain after the clock

Flip-flop Applications

Principal flip-flop applications are for temporary data storage, as frequency dividers, and in counters (later).

Typically, for data storage applications, a group of flip-flops are connected to parallel data lines and clocked together. Data is stored until the next clock pulse.

Flip-flop Applications

For frequency division, it is simple to use a flip-flop in the toggle mode or to chain a series of toggle flip flops to continue to divide by two.

One flip-flop will divide $f_{\text {in }}$ by 2 , two flip-flops will divide $f_{\text {in }}$ by 4 (and so on). A side benefit of frequency division is that the output has an exact 50% duty cycle.

Waveforms:

One-Shots
The one-shot or monostable multivibrator is a device with only one stable state. When triggered, it goes to its unstable state for a predetermined length of time, then returns to its stable state.

For most one-shots, the length of time in the unstable state $\left(t_{W}\right)$ is determined by an external $R C$ circuit.

Flip-flop Characteristics

Other specifications include maximum clock frequency, minimum pulse widths for various inputs, and power dissipation. The power dissipation is the product of the supply voltage and the average current required.
A useful comparison between logic families is the speed-power product which uses two of the specifications discussed: the average propagation delay and the average power dissipation. The unit is energy.
FIMT1 What is the speed-power product for 74 AHC 74 A ?
Use the data from Table 9-5 to determine the answer.
Q 0 From Table 9-5, the average propagation delay is 4.6 ns . The quiescent power dissipated is 1.1 mW . Therefore, the speed-power product is 5 pJ

One-Shots
Non-retriggerable one-shots do not respond to any triggers that occur during the unstable state.
Retriggerable one-shots respond to any trigger, even if it occurs in the unstable state. If it occurs during the unstable state, the state is extended by an amount equal to the pulse width.
Retriggerable one-shot:

One-Shots

An application for a retriggerable one-shot is a power failure detection circuit. Triggers are derived from the ac power source, and continue to retrigger the one shot. In the event of a power failure, the one-shot is not triggered and an alarm can be initiated.

The 555 timer

The 555 timer can be configured in various ways, including as a oneshot. A basic one shot is shown. The pulse width is determined by $R_{1} C_{1}$ and is approximately $\boldsymbol{t}_{\boldsymbol{W}}=$ $\ln (3) R_{1} C_{1} \approx 1.1 R_{1} C_{1}$

The trigger is a negative-going pulse.

The 555 timer

2MAII| 10 Determine the pulse width for the circuit shown.
©ก| $t_{W}=1.1 R_{1} C_{1}=1.1(10 \mathrm{k} \Omega)(2.2 \mu \mathrm{~F})=24.2 \mathrm{~ms}$

Slide Set 7

27

The 555 timer

Given the components, you can read the frequency from the chart. Alternatively, you can use the chart to pick components for a desired frequency.

Selected Key Terms

Latch A bistable digital circuit used for storing a bit.
Bistable Having two stable states. Latches and flip-flops are bistable multivibrators.

Clock A triggering input of a flip-flop.
D flip-flop A type of bistable multivibrator in which the output assumes the state of the D input on the triggering edge of a clock pulse.

J-K flip-flop A type of flip-flop that can operate in the SET, RESET, no-change, and toggle modes.

Selected Key Terms

Propagation The interval of time required after an input signal delay time has been applied for the resulting output signal to change.
Set-up time The time interval required for the input levels to be on a digital circuit.

Hold time The time interval required for the input levels to remain steady to a flip-flop after the triggering edge in order to reliably activate the device.
Timer A circuit that can be used as a one-shot or as an oscillator.
Registered A CPLD macrocell output configuration where the output comes from a flip-flop.
2. The D flip-flop shown will
a. set on the next clock pulse
b. reset on the next clock pulse
c. latch on the next clock pulse
d. toggle on the next clock pulse

4. Assume the output is initially HIGH on a leading edge triggered J-K flip flop. For the inputs shown, the output will go from HIGH to LOW on which clock pulse?
a. 1
b. 2
c. 3
d. 4
3. For the J-K flip-flop shown, the number of inputs that are asynchronous is
a. 1
b. 2
c. 3
d. 4

5. The time interval illustrated is called
a. $t \mathrm{PHL}$
b. $t \mathrm{PLH}$
c. set-up time
d. hold time

6. The time interval illustrated is called
a. $t \mathrm{PHL}$
b. $t \mathrm{PLH}$
c. set-up time
d. hold time

7. The application illustrated is a
a. astable multivibrator
b. data storage device
c. frequency multiplier
d. frequency divider

8. The application illustrated is a
a. astable multivibrator
b. data storage device
c. frequency multiplier
d. frequency divider

9. A retriggerable one-shot with an active HIGH output has a pulse width of 20 ms and is triggered from a 60 Hz line. The output will be a
a. series of 16.7 ms pulses
b. series of 20 ms pulses
c. constant LOW
d. constant HIGH

Digital Electronics

Counters

Counting in Binary

As you know, the binary count sequence follows a familiar pattern of 0 's and 1 's as described in Section 2-2 of the text.

	000	LSB changes on every
	001	number.
	010	The next bit changes
	011	on every other number.
	100	
every fourth number.	101	
	110	
	111	

Three bit Asynchronous Counter

In an asynchronous counter, the clock is applied only to the first stage. Subsequent stages derive the clock from the previous stage.
The three-bit asynchronous counter shown is typical. It uses J-K flip-flops in the toggle mode.

Waveforms are on the following slide...

Three bit Asynchronous Counter

Notice that the Q_{0} output is triggered on the leading edge of the clock signal. The following stage is triggered from Q_{0}. The leading edge of Q_{0} is equivalent to the trailing edge of Q_{0}. The resulting sequence is that of an 3-bit binary up counter.

Asynchronous Decade Counter

This counter uses partial decoding to recycle the count sequence to zero after the 1001 state. The flip-flops are trailing-edge triggered, so clocks are derived from the Q outputs. Other truncated sequences can be obtained using a similar technique.

Waveforms are on the following slide... ELEC2103

Asynchronous Decade Counter

When Q_{1} and Q_{3} are HIGH together, the counter is cleared by a "glitch" on the $\overline{C L R}$ line.

Slide Set 8 ELEC2103

Asynchronous Counter Using D Flip-flops

D flip-flops can be set to toggle and used as asynchronous counters by connecting Q back to D. The counter in this slide is a Multisim simulation of one described in the lab manual. Can you figure out the

The 74LS93A Asynchronous Counter

The 74LS93A has one independent toggle J-K flip-flop driven by CLK A and three toggle J-K flip-flops that form an asynchronous counter driven by CLK B.
The counter can be extended to form a 4 -bit counter by connecting Q_{0} to the $C L K$ B input. Two inputs are provided that clear the count.

Analysis of Synchronous Counters

A tabular technique for analysis is illustrated for the counter on the previous slide. Start by setting up the outputs as shown, then write the logic equation for each input. This has been done for the counter.

1. Put the counter in an arbitrary state; then determine the inputs for this state.		2. Use the new inputs to determine the next state: Q_{2} and Q_{1} will latch and Q_{0} will toggle.			3. Set up the next group of inputs from the current output.	
Outputs $1 \longleftarrow$ Logic for inputs						
$Q_{2} Q_{1} Q_{0}$	$J_{2}=Q_{0} Q_{1}$	$K_{2}=Q_{0} Q_{1}$	$J_{1}=Q_{0}$	$K_{1}=Q_{0}$	$J_{0}=1$	$K_{0}=1$
000	0	0	0	0	1	1
$\begin{array}{llll}0 & 0 & 1\end{array}$	0	0	1	1	1	1
010	4. Q_{2} will latch again but both Q_{1} and Q_{0} will toggle.					

A 4-bit Synchronous Binary Counter

The 4-bit binary counter has one more AND gate than the 3 -bit counter just described. The shaded areas show where the AND gate outputs are HIGH causing the next FF to toggle.

BCD Decade Counter

Waveforms for the decade counter:

These same waveforms can be obtained with an asynchronous counter in IC form - the 74LS90. It is available in a dual version the 74LS390, which can be cascaded. It is slower than synchronous counters (max count frequency is 35 MHz), but is simpler.

Analysis of Synchronous Counters

$Q_{2} Q_{1} Q_{0}$	$J_{2}=Q_{0} Q_{1}$	$K_{2}=Q_{0} Q_{1}$	$J_{1}=Q_{0}$	$K_{1}=Q_{0}$	$J_{0}=1$	$K_{0}=1$
000	0	0	0	0	1	1
$\begin{array}{llll}0 & 0 & 1\end{array}$	0	0	1	1	1	1
$\begin{array}{llll}0 & 1 & 0\end{array}$	0	0	0	0	1	1
$\begin{array}{llll}0 & 1\end{array}$	1	1	1	1	1	1
100	0	0	0	0	1	1
$1 \begin{array}{lll}1 & 0 & 1\end{array}$	0	0	1	1	1	1
1110	0	0	0	0	1	1
1114		this points and the c	all stat unter is	have b ready to	en acco ecycle	nted
$\begin{array}{llll}0 & 0 & 0\end{array}$						

Slide Set 8 ELEC2103

BCD Decade Counter

With some additional logic, a binary counter can be converted to a BCD synchronous decade counter. After reaching the count 1001 , the counter recycles to 0000.
This gate detects 1001, and causes FF3 to toggle on the next clock pulse. FF0 toggles on every clock pulse. Thus, the count

Slide Set 8
ELEC2103

Example waveforms are on the next slide...

A 4-bit Synchronous Binary Counter

The 74LS163 is a 4-bit IC synchronous counter with additional features over a basic counter. It has parallel load, a $\overline{C L R}$ input, two chip enables, and a ripple count output that signals when the count has reached the terminal count.

Slide Set 8 ELEC2103

Up/Down Synchronous Counters

Up/Down Synchronous Counters
The 74HC190 is a high speed CMOS synchronous up/down decade counter with parallel load capability. It also has a active LOW ripple clock output $(\overline{R C O})$ and a MAX/MIN output when the terminal count is reached.

The 74HC191 has the same inputs and outputs but is a synchronous up/down binary counter.

Slide Set 8
ELEC2103

Synchronous Counter Design

Most requirements for synchronous counters can be met with available ICs. In cases where a special sequence is needed, you can apply a step-by-step design process.
The steps in design are described in detail in the text and lab manual. Start with the desired sequence and draw a state diagram and nextstate table. The gray code sequence from the text is illustrated:

State diagram:

Next state table:

Synchronous Counter Design

The circuit can be checked with Multisim before constructing it. The next slide shows the Multisim result...

Cascaded counters

Cascading is a method of achieving higher-modulus counters. For synchronous IC counters, the next counter is enabled only when the terminal count of the previous stage is reached.

a) What is the modulus of the cascaded DIV 16 counters?
b) If $f_{\text {in }}=100 \mathrm{kHz}$, what is $f_{\text {out }}$?
a) Each counter divides the frequency by 16 . Thus the modulus is $16^{2}=256$.
b) The output frequency is $100 \mathrm{kHz} / 256=391 \mathrm{~Hz}$

Partial Decoding

The decade counter shown previously incorporates partial decoding (looking at only the MSB and the LSB) to detect 1001. This was possible because this is the first occurrence of this combination in the sequence.

Counter Decoding

Show how to decode state 5 with an active LOW output.

Logic Symbols

Dependency notation allows the logical operation of a device to be determined from its logic symbol.

Slide Set 8 ELEC2103

32

Selected Key Terms

Asynchronous Not occurring at the same time.

Modulus The number of unique states through which a counter will sequence.

Synchronous Occurring at the same time.
Terminal count The final state in a counter's sequence.
State machine A logic system exhibiting a sequence of states or values.

Cascade To connect "end-to-end" as when several counters are connected from the terminal count output of one to the enable input of the next counter.
2. The $Q 0$ output of the counter shown
a. is present before Q1 or Q2
b. changes on every clock pulse
c. has a higher frequency than Q1 or Q2
d. all of the above

1. The counter shown below is an example of
a. an asynchronous counter
b. a BCD counter
c. a synchronous counter
d. none of the above

2. The 7493A asynchronous counter diagram is shown (J's and K 's are HIGH.) To make the count have a modulus of 16, connect
a. $Q 0$ to $\mathrm{RO}(1)$ and $\mathrm{RO}(2)$ to
b. Q3 to $\mathrm{RO}(1)$ and $\mathrm{RO}(2)$
c. CLK A and CLK B together
d. Q0 to CLK B

Slide Set 8
ELEC2103

37
5. Assume $Q 0$ is LOW. The next clock pulse will cause
a. FF1 and FF2 to both toggle
b. FF1 and FF2 to both latch
c. FF1 to latch; FF2 to toggle
d. FF1 to toggle; FF2 to latch

Slide Set 8
ELEC2103
6. A 4-bit binary counter has a terminal count of
a. 4
b. 10
c. 15
d. 16
7. Assume the clock for a 4-bit binary counter is 80 kHz . The output frequency of the fourth stage $(Q 3)$ is
a. 5 kHz
b. 10 kHz
c. 20 kHz
d. 320 kHz
8. A 3-bit count sequence is shown for a counter ($Q 2$ is the MSB). The sequence is
a. 0-1-2-3-4-5-6-7-0 (repeat)
b. 0-1-3-2-6-7-5-4-0 (repeat)
c. 0-2-4-6-1-3-5-7-0 (repeat)
d. 0-4-6-2-3-7-5-1-0 (repeat)

Slide Set 8
ELEC2103
9. FF2 represents the MSB. The counts that are being decoded by the 3-input AND gates are
a. 2 and 3
b. 3 and 6
c. 2 and 5
d. 5 and 6

10. Assume the input frequency (fin) is 256 Hz . The output frequency (fout) will be
a. 16 Hz
b. 1 kHz
c. 65 kHz
d. none of the above

Digital Electronics

Shift Registers

Basic Shift Register Operations

A shift register is an arrangement of flip-flops with important applications in storage and movement of data. Some basic data movements are illustrated here.

Serial-in/Serial out Shift Register

Shift registers are available in IC form or can be constructed from discrete flip-flops as is shown here with a five-bit serial-in serial-out register.
Each clock pulse will move an input bit to the next flipflop. For example, a 1 is shown as it moves across.

The 74HC164A Shift Register

The 74HC164A is a CMOS 8-bit serial in/parallel out shift register. V_{CC} can be from +2.0 V to +6.0 V .

One of the two serial data inputs may be used as an active HIGH enable to gate the other input. If no enable is needed, the other serial input can be connected to $V_{\text {cc }}$. The 74HC164A has an active LOW asynchronous clear. Data is entered on the leading-edge of the clock.

Waveforms for the 74HC164A
Sample waveforms for the 74HC164A are shown. Notice that B acts as an active HIGH enable for the data on A as discussed.
As with CMOS devices, unused inputs should always be connected to a logic level; unused outputs should be left open.

Parallel in/Serial out Shift Register

Shift registers can be used to convert parallel data to serial form. A logic diagram for this type of register is shown:

Slide Set 9 ELEC2103

The 74HC165 Shift Register

A Multisim simulation of the 74165A is shown. The word generator is used as a source for the pattern shown in the green probes.

The 74HC165 Shift Register

The 74HC165 is a CMOS 8-bit parallel in/serial out shift register. The logic symbol is shown:

The clock (CLK) and clock inhibit (CLK INH) lines are connected to a common OR gate, so either of these inputs can be used as an activeLOW clock enable with the other as the clock input. Data is loaded asynchronously when $S H / L D$ is LOW and moved through the register synchronously when $S H / \overline{L D}$ is HIGH and a rising clock pulse occurs.

Slide Set 9
ELEC2103

The 74HC165 Shift Register

Here the scope is opened and you can observe the pattern. The MSB is HIGH and is on the Q_{7} output as soon as LOAD is LOW.

Slide Set 9
ELEC2103

Bidirectional Shift Register

Bidirectional shift registers can shift the data in either direction using a RIGHT/LEFT input.
The logic analyzer simulation shows a bidirectional shift register such as the one shown in Figure 9-19 of the text. Notice the HIGH level from the Serial data in is shifted at first from Q_{3} toward Q_{0}.

Bidirectional Shift Register

How will the pattern change if the RIGHT/ $\overline{L E F T}$ control signal is inverted?

See display

Universal Shift Register

A universal shift register has both serial and parallel input and output capability. The 74HC194 is an example of a 4-bit bidirectional universal shift register.

Sample waveforms are on the following slide...
ELEC2103

Shift Register Counters

Shift registers can form useful counters by recirculating a pattern of 0's and 1's. Two important shift register counters are the Johnson counter and the ring counter.

The Johnson counter can be made with a series of D flip-flops
... or with a series of J-K flip flops. Here Q_{3} and \bar{Q}_{3} are fed back to the J and K inputs with a "twist".

Universal Shift Register

Slide Set 9 ELEC2103

Johnson Counter

Redrawing the same Johnson counter (without the clock shown) illustrates why it is sometimes called as a "twistedring" counter.

Slide Set 9
ELEC2103

Johnson Counter

The Johnson counter is useful when you need a sequence that changes by only one bit at a time but it has a limited number of states ($2 n$, where $n=$ number of stages).

The first five counts for a 4-bit Johnson counter that is initially cleared are: CLK Q0 Q1 Q2 Q3
$\begin{array}{lllll}0 & 0 & 0 & 0 & 0\end{array}$ $\begin{array}{lllll}1 & 1 & 0 & 0 & 0\end{array}$ $\begin{array}{lllll}2 & 1 & 1 & 0 & 0\end{array}$ $\begin{array}{lllll}3 & 1 & 1 & 1 & 0\end{array}$ $\begin{array}{lllll}4 & 1 & 1 & 1 & 1\end{array}$

What are the remaining 3 states?

Ring Counter

The ring counter can also be implemented with either D flip-flops or J-K flip-flops.

Here is a 4-bit ring counter constructed from a series of D flip-flops. Notice the feedback.

Like the Johnson counter, it can also be implemented with J-K flip flops.

Ring Counter

Redrawing the Ring counter (without the clock shown) shows why it is a "ring".

The disadvantage to this counter is that it must be preloaded with the desired pattern (usually a single 0 or 1) and it has even fewer states than a Johnson counter (n, where $n=$ number of flip-flops.
On the other hand, it has the advantage of being self-decoding with a unique output for each state.

Ring Counter

A common pattern for a ring counter is to load it with a single 1 or a single 0 . The waveforms shown here are for an 8 -bit ring counter with a single 1.

Slide Set 9 ELEC2103

Shift Register Applications

Shift registers can be used to delay a digital signal by a predetermined amount.

An 8-bit serial in/serial out shift register has a 40 MHz clock. What is the total delay through the register?

Shift Register Applications

A UART (Universal Asynchronous Receiver Transmitter) is a serial-toparallel converter and a parallel to serial converter.

UARTs are commonly used in small systems where one device must communicate with another. Parallel data is converted to asynchronous serial form and transmitted. The serial data format is:

Keyboard Encoder

The keyboard encoder is an example of where a ring counter is used in a small system to encode a key press.

Two 74HC195 shift registers are connected as an 8-bit ring counter preloaded with a single 0 . As the 0 circulate in the ring counter, it "scans" the keyboard looking for any row that has a key closure. When one is found, a corresponding column line is connected to that row line. The combination of the unique column and row lines identifies the key. The schematic is shown on the following slide...

Key Terms

Register One or more flip-flops used to store and shift data.
Stage One storage element in a register.
Shift To move binary data from stage to stage within a shift register or other storage device or to move binary data into or out of the device.

Load To enter data in a shift register.
Bidirectional Having two directions. In a bidirectional shift register, the stored data can be shifted right or left.
b.

Slide Set 9 ELEC2103

1. The shift register that would be used to delay serial data by

4 clock periods is
a. Data in $\rightarrow \rightarrow$
Data out
c.

Data in

$\rightarrow \rightarrow$
2. The circuit shown is a
a. serial-in/serial-out shift register
b. serial-in/parallel-out shift register
c. parallel-in/serial-out shift register
d. parallel-in/parallel-out shift register

Slide Set 9 ELEC2103
4. A 4-bit parallel-in/parallel-out shift register will store data for
a. 1 clock period
b. 2 clock periods
c. 3 clock periods
d. 4 clock periods
5. The 74HC164 (shown) has two serial inputs. If data is placed on the A input, the B input
a. could serve as an active LOW enable
b. could serve as an active HIGH enable
c. should be connected to ground
d. should be left open

6. An advantage of a ring counter over a Johnson counter is that the ring counter
a. has more possible states for a given number of flip-flops
b. is cleared after each cycle
c. allows only one bit to change at a time
d. is self-decoding
7. A possible sequence for a 4 -bit ring counter is
a. ... 1111, 1110, 1101 ...
b. ... 0000, 0001, 0010 ...
c. ... $0001,0011,0111$...
d. ... 1000, 0100, 0010 ...
8. The circuit shown is a
a. serial-in/parallel-out shift register
b. serial-in/serial-out shift register
c. ring counter
d. Johnson counter

Slide Set 9 ELEC2103
9. Assume serial data is applied to the 8 -bit shift register shown. The clock frequency is 20 MHz . The first data bit
will show up at the output in
a. 50 ns
b. 200 ns
c. 400 ns
d. 800 ns

a. asynchronous serial form
b. synchronous parallel form
c. can be either of the above
d. none of the above

Digital Electronics

Memory \& Storage

Memory Units

Memories store data in units from one to eight bits. The most common unit is the byte, which by definition is 8 bits.

ㄷㄷㄷㄷㅁ

Computer memories are organized into multiples of bytes called words. Generally, a word is defined as the number of bits handled as one entity by a computer. By this definition, a word is equal to the internal register size (usually 16,32 , or 64 bits).

For historical reasons, assembly language defines a word as exactly two bytes. In assembly language, a 32 bit entity is called a double-word and 64 bits is defined as a quad-word.

Memory Addressing

A 3-dimensional array is arranged as rows and columns. Each byte has a unique row and column address.

This example is (of course) only for illustration. Typical computer memories have 256 MB or more of capacity.

Memory Addressing
In order to read or write to a specific memory location, a binary code is placed on the address bus. Internal decoders decode the address to determine the specific location. Data is then moved to or from the data bus.

The address bus is a group of conductors with a common function. Its size determines the number of locations that can be accessed. A 32 bit address bus can access 2^{32} locations, which is approximately 4G.

Memory Addressing

In addition to the address bus and data bus, semiconductor memories have read and write control signals and chip select signals. Depending on the type of memory, other signals may be required.

Read Enable $(\overline{R E})$ and Write Enable $(\overline{W E})$ signals are sent from the CPU to memory to control data transfer to or from memory.

Chip Select $(\overline{C S})$ or Chip Enable $(\overline{C E})$ is used as part of address decoding. All other inputs are ignored if the Chip Select is not active.

Output Enable $(\overline{O E})$ is active during a read operation, otherwise it is inactive. It connects the memory to the data bus.

Read and Write Operations

The two main memory operations are called read and write. A simplified write operation is shown in which new data overwrites the original data. Data moves to the

Read and Write Operations

The read operation is actually a "copy" operation, as the original data is not changed. The data bus is a "two-way" path; data moves from the memory during a read operation.

Random Access Memory

RAM is for temporary data storage. It is read/write memory and can store data only when power is applied, hence it is volatile. Two categories are static RAM (SRAM) and

Asynchronous Static RAM
The basic organization of an asynchronous SRAM is shown. Read cycle sequence:

- A valid address is put on the address bus
- Chip select is LOW
- Output enable is LOW
- Data is placed on the data bus

Write cycle sequence:

- A valid address is put on the address bus
- Chip select is LOW
- Write enable is LOW
- Data is placed on the data bus

Static RAM

SRAM uses semiconductor latch memory cells. The cells are organized into an array of rows and columns.

SRAM is faster than DRAM but is more complex, takes up more space, and is more expensive. SRAMs are available in many configurations - a typical large SRAM is organized as 512 k X 8 bits.

Slide Set 10
ELEC2103
10

Dynamic RAM (DRAM)

Dynamic RAMs (DRAMs) store data bits as a charge on a capacitor.
DRAMs are simple and cost effective, but require refresh circuitry to prevent losing data. The address lines are multiplexed to reduce the number of address lines.

Dynamic RAM (DRAM)

A feature with some DRAMs is fast page mode. Fast page mode allows successive read or write operations from a series of columns address that are all on the same row.

Other types of DRAMs have been developed to speed access and make the processor more efficient. These include EDO DRAMs, BEDO DRAMs and SDRAMs, as described in the text.

Read-Only Memory (ROM)

A ROM symbol is shown with typical inputs and outputs. The triangles on the outputs indicate it is a tri-stated device. To read a value from the ROM, an address is placed on the address bus, the chip is enabled, and a short time later (called the access time), data appears on the data bus.

Flash Memory

Flash memories are high density read/write memories that are nonvolatile. They have the ability to retain charge for years with no applied power.

Flash memory uses a MOS transistor with a floating gate as the basic storage cell. The floating gate can store charge (logic 0) when a positive voltage is applied to the control gate. With little or no charge, the cell stores a logic 1.

The flash memory cell can be read by applying a positive voltage to the control gate. If the cell is storing a 1 , the positive voltage is sufficient to turn on the transistor; if it is storing a 0 , the transistor is off.

Flash Memory

Flash memories arranged in arrays with an active load. For simplicity, only one column is shown. When a specific row and column is selected during a read operation, the active load has current.

One drawback to flash memory is that once a bit has been set to 0 , it can be reset to a 1 only by erasing an entire block of memory. Another limitation is that flash memory has a large but finite number of read/write cycles

Memory Expansion

Memory can be expanded in either word size or word capacity or both.
To expand word size:

Notice that the data bus size is larger, but the number of address is the same.

Only one of the ICs is enabled at any time depending on the logic on the added address line.

SIMMs and DIMMs

SIMMs (single in-line memory modules) and DIMMs (dual in-line memory modules) are plug-in circuit boards containing the ICs and I/O brought out on edge connectors. SIMMs have a 32 -bit data path with I/O on only one side whereas DIMMs have a 64-bit data path with I/O on both sides of the board.

Slide Set 10 ELEC2103

FIFO Memory

FIFO means first in-first out. This type of memory is basically an arrangement of shift registers. It is used in applications where two systems communicate at different rates.

$$
\begin{aligned}
& \text { Memory array stores } \\
& 64 \text { 4-bit data words }
\end{aligned}
$$

LIFO Memory

LIFO means last in-first out. In microprocessors, a portion of RAM is devoted to this type of memory, which is called the stack. Stacks are very useful for temporary storage of internal registers, so that the processor can be interrupted but can easily return to a given task.

A special register, called the stack pointer, keeps track of the location that data was last stored on the stack. This will be the next data to be taken from the stack when needed.

Magnetic Hard Drive

The magnetic hard drive is the backbone of computer mass storage and is applied to other devices such as digital video recorders. Capacities of hard drives have increased exponentially, with 1 TB (1 trillion bytes!) drives available today.
Platters are arranged in tracks (circular shapes) and sectors (pie shaped). Files are listed in a File Allocation Table, (FAT) that keeps track of file names, locations, size, and more.

Optical Storage

The compact disk (CD) uses a laser to burn tiny pits into the media. Surrounding the pits are flat areas called lands. The CD can be read using a low-power IR laser that detects the difference between pits and lands.

Binary data is encoded with a special method called negative non-return to zero encoding. A change from a pit to a land or a land to a pit represents a binary one, whereas no change represents a zero. A standard 120 mm CD can hold approximately 700 MB of data.

Selected Key Terms

Address The location of a given storage cell or group of cells in memory.

Capacity The total number of data units (bits, nibbles, bytes, words) that a memory can store.
SRAM Static random access memory; a type of volatile read/write semiconductor memory.
DRAM Dynamic random access memory; a type of read/write memory that uses capacitors as the storage elements and is a volatile read/write memory.

PROM Programmable read-only memory; type of semiconductor memory.

Selected Key Terms

EPROM
Erasable programmable read-only memory; a type of semiconductor memory device that typically uses ultraviolet light to erase data.

Flash memory A nonvolatile read/write random access semiconductor memory in which data are stored as charge on a floating gate of a certain type of FET.

FIFO First in-first out memory.
LIFO Last in-first out memory
Hard disk A magnetic storage device; typically a stack of two or more rigid disks enclosed in a sealed housing.

1. Static RAM is
a. nonvolatile read only memory
b. nonvolatile read/write memory
c. volatile read only memory
d. volatile read/write memory
2. A nonvolatile memory is one that
a. requires a clock
b. must be refreshed regularly
c. retains data without power applied
d. all of the above
3. The advantage of dynamic RAM over static RAM is that
a. it is much faster
b. it does not require refreshing
c. it is simpler and cheaper
d. all of the above
4. The first step in a read or write operation for a random access memory is to
a. place a valid address on the address bus
b. enable the memory
c. send or obtain the data
d. start a refresh cycle
5. The output enable signal ($O E$) on a RAM is active
a. only during a write operation
b. only during a read operation
c. both of the above
d. none of the above
6. When data is read from RAM, the memory location is
a. cleared after the read operation
b. set to all 1's after the read operation
c. unchanged
d. destroyed
7. An EPROM has a window to allow UV light to enter under certain conditions. The purpose of this is to
a. refresh the data
b. read the data
c. program the IC

d. erase the data
8. The small triangles on the logic diagram indicate that these outputs are
a. not used
b. tri-stated
c. inverted
d. grounded

9. Using two ICs as shown will expand
a. the word size
b. the number of words available
c. both of the above
d. none of the above

10. On a hard drive. information about file names, locations, and file size are kept in a special location called the
a. file location list
b. file allocation table
c. disk directory
d. stack

UNIVERSITY TECHNOLOGY, MAURITIUS

BEng (Hons.) Electronic Engineering
 BEng (Hons.) Telecommunications BEngEE/09/FT - BEngTEL/09/FT

Examinations for 2010-2011 / Semester 1

MODULE: DIGITAL ELECTRONICS
MODULE CODE: ELEC2102
Duration: $\mathbf{2}^{112}$ Hours
Reading Time: None

```
Instructions to Candidates:
1. Attempt ALL FOUR questions
2. Start your answer to each question on a fresh page
3. Questions carry equal marks
4. Total Marks = 100
5. Electronic Calculators are allowed in the Examination Room
```

This question paper contains 4 questions and 5 pages.

QUESTION 2 (25 MARKS)
(a) Implement $f(A, B, C)=\bar{A} C+A \bar{B} C+A B \bar{C}$ using only one 4-to-1 multiplexer.
(b) Hardware-implement a 3-bit comparator having only one output that goes HIGH when the two 3 -bit numbers are equal. Use only NAND gates. (To help you, find below the implementation of a 2-bit magnitude comparator.)

(7 marks)
(c) Design a 4-to-1 multiplexer using two 2-to-1 multiplexers each with activelow ENABLE lines and NOR gates only.
(Make sure to label Inputs lines $I_{0}-I_{3}$, Select lines S_{0} \& S_{1} and $E N$ lines correctly)
(d) Design a 4-bit adder by using four full-adders in parallel.

ATTEMPT ALL FOUR QUESTIONS

QUESTION 1 (25 Marks)
(a) Assume the following circuit below:

(i) Derive an equation for the output Q in terms of A, B and C .
(ii) Simplify the equation above using De Morgan's Theorems and draw the resulting equivalent circuit.
(Assume that complemented inputs are unavailable)
(b) Using Boolean algebra, simplify the following expression:

$$
X=A B+A(B+C)+B(B+C)
$$

(c) Convert the following expression in standard POS form:

$$
X=(\bar{A}+\bar{B})(A+B+C)
$$

(4 marks)
(d) Using K-maps, simplify the following examples:
(i) $f(A, B, C, D)=\sum m(1,3,4,5,7,10,11,12,14,15)$
(ii) $f(A, B, C)=B C+\bar{A} \bar{C}$ and 'don't care' conditions as $A \bar{B}+A B \bar{C}+\bar{A} \bar{B} C$

QUESTION 3 (25 MARKS)
(a) Consider the following circuit, with typical gate propagation delays, as shown:

(i) Sketch the output waveform X for the following input waveforms:

(5 marks)

(ii) Sketch the equivalent circuit using NAND gates only and calculate the overall propagation delay for the new circuit with one NAND delay of 3 ns .
(b) The signals A and B are applied to the inputs of a SR latch, a JK-FF and a D-FF. Sketch the waveforms at $\mathrm{W}, \mathrm{X}, \mathrm{Y}$ and Z . (Assume all Q are HIGH initially)

QUESTION 4: (25 MARKS)

(a) There are three main digital IC technologies: TTL, ECL and CMOS
(i) What is the meaning of a ECL?
(ii) Give two advantages of ECL over TTL?
(iii) What do yo understand by the fall-time of a digital pulse?
(b) Given the following 555 Timer IC and assuming that $\mathrm{R}_{1}=50 \mathrm{k} \Omega$ and $\mathrm{C}_{1}=10 \mu \mathrm{~F}$:
(i) Evaluate the value of resistor R_{2} which will provide a 60% duty-cycle?
(ii) Hence, calculate the pulse period of the output.

(3+5 marks)
(c) The circuit below contains 2 D-type flip-flops with an asynchronous, active-low $\overline{C L R}$ input. Assume that Q0 and Q1 are both LOW initially, sketch a timing diagram showing the waveforms of CLOCK, Q0 and Q1 for the next six clock pulses.

(3+3+3 marks)
*** End of Exam Paper ***

ATTEMPT ALL FOUR QUESTIONS

QUESTION 1 (25 Marks)
(a) Assume the following circuit below:

(i) Derive an equation for the output Q in terms of W, X and Z .
(ii) Using the equation above using De Morgan's Theorems and redraw the resulting equivalent circuit using only NOR gates.
(Assume that complemented inputs are not available)
(b) Using Boolean algebra, simplify the following expression:

$$
\mathbf{X Y Z}+\overline{\mathbf{X}} \mathbf{Y}+\mathbf{X Y} \overline{\mathbf{Z}}
$$

(c) Convert the following expression in standard POS form:

$$
\mathbf{X}=(\overline{\mathbf{A}}+\overline{\mathbf{B}}) \cdot(\mathbf{A}+\mathbf{B}+\mathbf{C})
$$

(d) Using K-maps, simplify the following examples:
(i) $\mathbf{f}(\mathbf{W}, \mathbf{X}, Y, Z)=\mathbf{m}(\mathbf{1 , 3 , 4 , 5 , 7 , 1 0 , 1 1 , 1 2 , 1 4 , 1 5)}$
(ii) $\mathbf{f}(\mathbf{A}, \mathbf{B}, \mathbf{C})=\mathbf{B C}+\overline{\mathbf{A C}}$ and 'don't care' conditions as $\mathbf{A} \overline{\mathbf{B}}+\mathbf{A B} \overline{\mathbf{C}}+\overline{\mathbf{A B}} \mathbf{C}$

UNIVERSITY TECHNOLOGY, MAURITIUS

BEng (Hons.) Telecommunications
BEng (Hons.) Electronic Engineering BTEL/14/FT- BEE/14/FT

Examinations for 2015-16 / Semester 1

MODULE: DIGITAL ELECTRONICS
MODULE CODE: ELEC2102C
Duration: $21 / 2$ Hours
Reading Time: None

Instructions to Candidates:

1. Attempt ALL FOUR questions
2. Start your answer to each question on a fresh page
3. Questions carry equal marks
4. Total Marks $=100$
5. Electronic Calculators are allowed in the Examination Room

This question paper contains 4 questions and 5 pages.

Question 2 (25 MARKS)

(a) Implement the function $\boldsymbol{f}(\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \boldsymbol{D})=\boldsymbol{\Sigma} \boldsymbol{m}(1,2,5,8,10,12,13,14)$ using only one 8-to-1 multiplexer.
(8 marks)
(b) Show how you can design one 12-bit magnitude comparator using only 4-bit magnitude comparators.
(8 marks)
(c) Design a 16-to-1 multiplexer with an active-high ENABLE line using two 8-to1 multiplexer blocks both with active-high ENABLE lines.
(5 marks)
(d) Design a full-adder using 2 half-adders and an OR gate. (Do not use any additional gates.)

4 marks)

QUESTION 3 (25 MARKS)

(a) Consider the following combinational circuit below:

(i) Calculate the propagation delay for each output. Assume that there are no hazards and that each gate has a delay of 10 ns .
(ii) Redraw the above circuit using only NAND gates with propagation delay of 5 ns and calculate the new overall propagation delay for each output.
(b) The signals A and B are applied to the inputs of a SR latch, a D-FF and a JK-FF. Sketch the waveforms at $\mathrm{W}, \mathrm{X}, \mathrm{Y}$ and Z . (Assume all Q are HIGH initially)

(2+3+3+5 marks)
(a) There are three major digital IC technology: TTL, CMOS and ECL
(i) What is the meaning of a CMOS?
(ii) Give two advantages of CMOS over TTL?
(iii) Give two advantages of ECL over CMOS?
(iv) What do yo understand by the fall-time of a digital pulse?
(3+2+4+2 marks)
(b) Given the following 555 Timer IC and assuming that $\mathrm{R}_{1}=10 \mathrm{k} \Omega$ and $\mathrm{C}_{1}=5 \mu \mathrm{~F}$:
(i) Evaluate the value of resistor R_{2} which will provide a 50% duty-cycle?
(ii) Hence, calculate the pulse width of the output.

(c) Draw a circuit diagram for a 4-bit asynchronous counter.
*** End of Exam Paper ***
(6 marks)
(3+5 marks)

