CAN 1011: Data Communication

Multiplexing

Contents

- Three Multiplexing Techniques
 - Frequency Division Multiplexing (FDM)
 - Time Division Multiplexing (TDM)
 - Code Division Multiplexing (CDM)

Introduction

- Multiplexing: A generic term used when more than multiple source share the capacity
 of one link
- Objective is to achieve better utilization of the link bandwidth (channel capacity)

Motivation

- High capacity (data rate) links are cost effective.
 i.e. it is
 more economical to go for large capacity links
- But requirements of individual users are usually fairly modest...e.g. 9.6 to 64 kbps for non intensive (graphics, video) applications
- Solution: Let a number of such users share the high capacity channel (Multiplexing)
- Example: Long haul trunk traffic:
 - High capacity links: Optical fiber, terrestrial microwaves, etc.
 carrying large number of channels between cities over large distances

Multiplexing Types

Our three resources:

Time Frequency Code

Our channels must be separated in at least one resource

The resource in which they are separated is "divided" between them:

CDM: Separation in code

TDM: Separation in time

FDM: Separation in frequency

To use the same circuit (line)
i.e. sharing space:
Use either TDM, FDM or CDM

Frequency Division Multiplexing (FDM) (With Analogue Signals)

- Channels exist on the same line (space) at the same time:
- Must be separated in frequency!

FDM

- Useful bandwidth of medium exceeds required bandwidth of a channel
- Signal of each channel is modulated on a different carrier frequency f_c
- So, channels are shifted from same base band by different f_c's to occupy different frequency bands
- Carrier frequencies separated so that channels do not overlap (also include some guard bands)
- Disadvantage: Channel spectrum is allocated even if no data available for transmission in channel (rigid allocation)

FDM Multiplexing Process: Frequency-Domain View at TX

RHH

are at (same) base band

Slide Set 11

FDM De-Multiplexing Process: Frequency-Domain View at RX

Guard bands prevent channel overlap

3 different pass-band filters,

each bracketing a channel

All received channels restored to base band

FDM System – Transmitter

(b) Spectrum of composite baseband modulating signal

RHH

Slide Set 11

FDM System – Receiver

FDM characteristic problems

- Two potential problems characterize FDM and all broadband applications
 - Crosstalk:
 - Due to overlap between channel spectra and the use of non-ideal filters to separate them
 - → Use guard bands to reduce it
 - Inter modulation noise:
 - Nonlinearities in amplifiers 'mix' the MUXed channels
 - This generates spurious frequency components (sum, difference) which fall within channel BWs!
 - Limits the amount of amplification possible

TDM Frames

Time Division Multiplexing (TDM)

Synchronous TDM: (Fixed channel scan arrangement)

- Time slots pre-assigned to sources and fixed
- Disadvantage: Time slots allocated even if no data available (channel capacity waste, as with BW waste in FDM)
- But simple to implement, e.g. No need to send ID of source channel
- We could assign more than time slot per scan for faster sources- but on a permanent basis

TDM System – Receiver

Code Division Multiplexing

Each channel has a unique code

All channels use the same spectrum at the same time

Advantages:

- bandwidth efficient
- no coordination and synchronization necessary
- good protection against interference and tapping

Disadvantages:

- lower user data rates
- more complex signal regeneration

Implemented using spread spectrum technology

