
Lecture 5
COMPARING AND BRANCHINGComputer programs are of no particular worth unless decisions can be made in them. In IBM PC assembly Language (and most modern computers) decision-making is a two step process:1. Two numbers are compared using cmp, the compare instruction, which sets several bits in a 16-bit
register of the CPU called the flags register, and 2. A conditional jump instruction is executed which does or does not go to a new location based on the values of those flags.The cmp instruction has two operands just like the mov instruction:

cmp reg/mem, reg/mem/constantwith the usual limitation of at most one memory operand per instruction. The operands can either be bytes, words or double words but as usual must be of the same size.The instruction
cmp op1, op2performs the subtraction op1 – op2, sets the flags according to the result, and discards the result. The flags set by the cmp instruction are as follows:
O – Overflow Flag (OF), S – Sign Flag (SF), Z – Zero Flag (ZF), C – Carry Flag (CF)(The S flag is set to the sign of the result, the Z flag is set to 1 if the result is zero, and the O and C flags are set to the Overflow and Carry status of the result respectively. The shaded portion of the flags register represents other flags and unused bits.) For each of these flags there are two conditional jumps. For instance, jc jumps if the Carry flag is set i.e. is equal to 1, and jnc jumps on no carry flag, i.e. CF = 0. The >, <=, etc, conditions require complicated combinations of these jumps. So a number of other conditional jumps are provided:For SIGNED Numbers, after cmp op1, op2

je address ;jump if equal (op1 = op2)
jne address ;jump if not equal (op1 ≠ op2)
jg address ;jump if greater (op1 > op2)
jge address ;jump if greater or equal (op1 ≥ op2)
jl address ;jump if less (op1 < op2)
jle address ;jump if less or equal (op1 ≤ op2)You can think of the relation in the conditional jump instruction as sitting between the operands.

cmp op1, “<” op2
jl addressIf the condition of a conditional jump is true, then the jump is taken else we fall through the instructions following the conditional jump.

Page 1 of 4

O S Z C
121315 14 1O11 679 8 45 013 2Bit number:

Lecture 5
Therefore, Jcondition address is equivalent to executing if condition is true then IP = address In addition, we have an unconditional jump, one that is taken in all circumstances:

jmp address ;jump unconditionally
Note: Labels of pseudo-instructions must not have a colon, all other must be followed by a colon
Example 1:

cmp ax, bx
jl axless
mov X, 1
jmp Both

axless: mov X, -1
Both: nopThe equivalent pseudo-code is: If (ax < bx) then X = -1 else X = 1

Decoration

❖ If a conditional jump turns out to be true, it is drawn above the line
❖ If a conditional jump turns out to be false, it is drawn below the line

Hence
If (ax < bx) then X = -1 else X = 1

After you have drawn the lines, you can translate the various parts of the equation into assembly language,
leaving a blank corresponding to each start of an arrow and inserting a label for each arrow head.
Step 1

cmp ax, bx ; if (ax < bx) then …

mov X, -1 ; X = -1

label1: mov X, 1 ; X = 1
label2: nop

Step 2Now we can fill in the blank lines by inserting appropriate jumps. We will enter false jumps i.e. for every instruction JXX to jump on condition XX being true, there is a corresponding JNXX instruction, for (Jump
on Not XX which is taken when the condition is false. Therefore, our code becomes:

cmp ax, bx ; if (ax < bx) then …
jnl Label1 ; (jump on Not Less)
mov X, -1 ; X = -1
jmp Label2

label1: mov X, 1 ; X = 1
label2: nop

Note: The jmp Label2 is mandatory. Otherwise, X will always get set to 1, no matter what !!!
Page 2 of 4

Lecture 5
Example 2:

If (A < B) and (B >=4) then X = A else X = B

Step 1:
mov ax, A
cmp ax, B ; if (A < B) and …

cmp B, 14 ; (B >=14) then …

mov ax, A
mov X, ax ; X = A

label1: mov ax, B
mov X, ax ; X = B

label2:
Step 2:

mov ax, A
cmp ax, B ; if (A < B) and …
jnl Label1
cmp B, 14 ; (B >=14) then …
jnge Label1 ; Note: jnge is equivalent to jl
mov ax, A
mov X, ax ; X = A
jmp Label2

label1: mov ax, B
mov X, ax ; X = B

label2:

Simplify by FactoringWe notice that both halves of the IF branch ends with the same instruction: mov X, axWe can replace these two instructions with a single occurrence outside the end of the two branches by deleting the first occurrence of mov X, ax and moving the label2: label to before the second occurrence.
mov ax, A
cmp ax, B ; if (A < B) and …
jnl Label1
cmp B, 14 ; (B >=14) then …
jnge Label1 ; Note: jnge is equivalent to jl
mov ax, A ; X = A
mov X, ax
jmp Label2

label1: mov ax, B
label2: mov X, ax ; X = B
label2:We see that the second mov ax, A instruction is superfluous since A is already in ax, so our code becomes:

mov ax, A
cmp ax, B ; if (A < B) and …

Page 3 of 4

Lecture 5
jnl Label1
cmp B, 14 ; (B >=14) then …
jnge Label1 ; Note: jnge is equivalent to jl
mov ax, A ; X = A
jmp Label2

label1: mov ax, B
label2: mov X, ax ; X = Bwhich is equivalent to

mov ax, A
cmp ax, B ; if (A < B) and …
jnl Label1
cmp B, 14 ; (B >=14) then …
jnge Label1 ; Note: jnge is equivalent to jl
jmp Label2

label1: mov ax, B
label2: mov X, ax ; X = BAfter the deletion of the previous mov instruction, we now have a situation of a jump around a jump – a

conditional jump followed immediately by an unconditional jump followed immediately by the
destination of the conditional jump. That is:jcondition LabelXjmp SomewhereElseLabelX:This situation can always be replaced by the simple code:

jNOTcondition SomewhereElse

Final optimized code becomes:
mov ax, A
cmp ax, B ; if (A < B) and …
jnl Label1
cmp B, 14 ; (B >=14) then …
jge Label2 ; X = A

label1: mov ax, B ; X = B
label2: mov X, ax

UNSIGNED CONDITIONAL JUMPSIt is sometimes necessary to use unsigned conditional jumps. Subtraction is the same whether the numbers are signed or not. For UNSIGNED Numbers, after cmp op1, op2

ja address ;jump if above (op1 = op2)
jae address ;jump if above or equal (op1 ≥ op2)
jb address ;jump if below (op1 < op2)
jbe address ;jump if below or equal (op1 ≤ op2)Page 4 of 4

